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Social networks mediate the spread of information and disease. The
dynamics of spreading depends, among other factors, on the
distribution of times between successive contacts in the network.
Heavy-tailed (bursty) time distributions are characteristic of human
communication networks, including face-to-face contacts and elec-
tronic communication via mobile phone calls, email, and internet
communities. Burstiness has been cited as a possible cause for slow
spreading in these networks relative to a randomized reference net-
work. However, it is not known whether burstiness is an epiphenom-
enon of human-specific patterns of communication. Moreover, theory
predicts that fast, bursty communication networks should also exist.
Here, we present a high-throughput technology for automated
monitoring of social interactions of individual honeybees and the
analysis of a rich and detailed dataset consisting of more than
1.2 million interactions in five honeybee colonies. We find that bees,
like humans, also interact in bursts but that spreading is significantly
faster than in a randomized reference network and remains so even
after an experimental demographic perturbation. Thus, while bursti-
ness may be an intrinsic property of social interactions, it does not
always inhibit spreading in real-world communication networks. We
anticipate that these results will inform future models of large-scale
social organization and information and disease transmission, and
may impact healthmanagement of threatened honeybee populations.
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Social life depends on intricate networks of interactions
among conspecifics. This is especially true for highly social

animals, such as humans and eusocial insects, who use these
interactions to coordinate their activities (1, 2). Network science
has provided a wealth of insights about how interaction patterns
impact coordination, information exchange, and disease trans-
mission in animal societies (e.g., refs. 3 and 4). Recently, this
knowledge has been further enhanced by the use of temporal
network models, which, in addition to representing individuals
and their social connections, also record when the connections
between individuals are active (5, 6). Temporal networks thus
acknowledge that the connection between linked individuals is
only available while these individuals interact and crucially account
for the temporal ordering of interactions, making them particularly
relevant for models of disease and information spreading (5, 6).
Spreading simulations are a powerful approach to quantifying

how well an empirical temporal network supports transmission
processes. Instead of tracking a particular piece of information or
disease, such simulations probe the structure of the observed
network and, by comparison against a randomized reference
model, provide insight into how spreading dynamics reflect social
interactions (5). For example, analysis of susceptible-infected (SI)
spreading simulations on networks of face-to-face contacts, mobile
phone calls, email, and internet communities revealed that in these

networks spreading is slower than expected (5–10), suggesting that
they are not optimized for fast information or disease transmission.
The speed of spreading on a social network depends on the in-

terplay of a variety of factors, such as its topology and the timing
of successive contacts (5, 8). Human communication networks are
characterized by an intermittent, unpredictable timing of interac-
tions, with time intervals between successive social contacts de-
scribed by a heavy-tailed distribution (burstiness) (8–11). Network
theory predicts that the interplay of burstiness and other network
properties could accelerate spreading (12–14). However, no fast
and bursty human communication networks have been reported,
and in other animal societies there are very few studies of tempo-
rally highly resolved communication networks that were conducted
over long enough timescales to be able to explore the relationship
between burstiness and spreading dynamics (15, 16).
We studied burstiness and spreading dynamics in the honeybee

(Apis mellifera), a highly accessible and easily manipulated model
system for social behavior and communication. Honeybees form
large societies with tens of thousands of individuals, coordinated
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via frequent information exchanges that are in part mediated by
social interactions (17). One of these interactions is “trophallaxis,”
during which two bees touch each other with their antennae while
orally transferring liquid food (18). In honeybees and other social
insects, all colony members engage in trophallaxis extensively (19–
22) and it takes place more often than expected if its sole purpose
is feeding (19). Trophallaxis has been implicated in disease trans-
mission (23–25) and communication (17, 26), and recent findings
report the occurrence of several types of communication-related
molecules in trophallaxis fluid (27). Honeybee trophallaxis is thus
an excellent system for exploring the relationship of burstiness and
spreading in a nonhuman animal society, permitting a cross-species
comparison with human communication networks. This com-
parison enables us to explore whether highly social animals
have similar interaction patterns and whether their networks
function in a similar way.
We developed a method to automatically monitor trophallaxis

with high spatiotemporal resolution over extended periods of time
(Figs. 1–3 and SI Materials and Methods). Similar to other high-
throughput approaches for tracking insects (15, 28–30), we based
our method on a custom matrix barcode, called “bCode” (Fig. S1).
Attached to the thorax, bCodes enabled reliable identification and
tracking of every individual in a colony from sequences of digital
images (SI Materials and Methods). To detect trophallaxis, our
software first uses information about each bee’s position and ori-
entation to identify pairs of bees that were in the proper position
(Fig. 2). Custom computer vision algorithms then determine for
each pair the exact position, shape, and orientation of the bees’
heads (Fig. S2) and verify trophallaxis by confirming that the heads
are connected by a shape that resembles a proboscis (tongue) or
antenna (Fig. 3).
We monitored five honeybee colonies for 8–11 d each (Table

S1). To standardize the colonies, they were each established with
1,200 1-d-old adult worker bees and a queen. Such colonies have
been shown to develop the basic elements of colony social orga-
nization despite an atypical age demography (31). Bees were
housed in a single-sided, glass-walled observation hive designed
to prevent them from obscuring each other’s barcodes (Fig. S3).
The observation hive was kept in a dark, temperature-controlled
room (Fig. 1A) and connected to the outside for normal foraging.
Barcoded bees were imaged once per second by a computer-
controlled high-resolution camera under infrared light invisible
to the bees (32).

Results and Discussion
Trophallaxis interactions were analyzed as temporal networks (5),
with nodes representing individuals, and time-stamped edges con-
necting nodes if the corresponding individuals interacted at least
once. These networks revealed that honeybee interactions are
bursty, as seen in the distribution of waiting times τ between suc-
cessive interactions of individual bees (Fig. 4A and Fig. S4A). This
distribution can be represented by a power law fit P(τ) ∼ τ-α (Fig.
4A, Table 1, and Fig. S4A), although other functional forms are
also possible. Most importantly, this distribution is not consistent
with an exponential or other short-tailed distribution expected from
a memoryless process, suggesting the presence of non-Markovian,
long-ranged temporal correlations whose origin is presently un-
clear. By contrast, the waiting times in ensembles of 100 temporally
randomized networks, in which the times of the original interac-
tions were randomly permuted, were approximately exponentially
distributed (Fig. 4A and Fig. S4A). The coefficient of burstiness for
honeybee networks (Table 1) was similar to that observed for
human telephone and email communication (33), demonstrating a
striking parallel between the interaction patterns of both species.
Since bursty interactions have been associated with slow spreading

dynamics in human communication networks, we expected that
spreading in the bee networks is also inhibited. To test this hypoth-
esis, we simulated spreading in each empirical trophallaxis network

and in the ensembles of temporally randomized networks, using the
deterministic SI model (34) (see Materials and Methods for details).
This model is commonly used to explore how well the temporal
pattern of human social contacts supports spreading processes
through a network (reviewed in refs. 5 and 7), enabling us to readily
compare results across species.
In contrast to human communication networks, spreading was

faster in the bee networks than in the temporally randomized ref-
erence networks (Fig. 4B and Fig. S4B). The difference in preva-
lence varied over time (Fig. S5), with accelerated spreading seen
until most individuals (p ̽ = 78.2 ± 7.3%, mean ± SD, n = 5) were
“infected” (Fig. 4B, Table 1, and Fig. S4B). Following ref. 8, we
used the time at which 20% of the bees were “infected” to quantify
spreading speedup. Spreading was almost 50% faster than in the
corresponding ensemble of randomized reference networks (s =
46.7 ± 13.7%, n = 5; conditional uniform graph test, n = 100, P <
0.01 for all trials) (Fig. 4C, Table 1, and Fig. S4C).
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Fig. 1. Assay for automatically monitoring social interactions (trophallaxis)
in honeybee colonies. (A) Experimental setup. Bees were housed in a glass-
walled observation hive (a) that contained a one-sided honeycomb and
was connected to a hole in the wall allowing unlimited access to the out-
doors for foraging. The hive was illuminated with eight infrared LED lights
mounted on an aluminum frame (b). To facilitate automatic image analysis,
the honeycomb was backlit with an array of infrared lights mounted behind
the hive (c, hidden). Images were recorded with a high-resolution mono-
chrome camera (d) that controlled the infrared lights via a breakout board
(e). A standard personal computer (f) controlled the camera and stored
images. Some cables are omitted for visual clarity. (B) Typical image obtained
from this system, showing barcoded bees inside the observation hive. Out-
lines reflect whether a barcode could be decoded successfully (green), could
not be decoded (red), or was not detected (no outline). The hive entrance is
in the lower-right corner. (Inset) Close-up of two bees that were automati-
cally detected performing trophallaxis.
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Because even weak temporal randomization procedures, such
as the one employed in this study, destroy burstiness as well as
other temporal structures, we cannot determine which of these
structures is responsible for accelerated spreading. However, we
confirmed that accelerated spreading was not simply due to an
increase in the mean waiting time in the randomized reference
networks (Table S2 and SI Text). In fact, spreading was faster than
expected even when interactions resulting in short waiting times
were removed in silico from the trophallaxis networks (SI Text).
These results suggested that a mechanism other than an excess of
short waiting times (Fig. 4A and Fig. S4A), possibly temporal
correlations or network topology, underlies accelerated spreading.
We investigated whether network topology has an effect on

spreading by simulating spreading on a second null model where,
in addition to randomly permuting the interaction times, the
edges of each trophallaxis network were randomly rewired. This
additional randomization led to a statistically significant slow-
down relative to the temporally randomized reference networks
(Mann–Whitney U test, U ≥ 15.5, n = 100, P < 4.34·10−30 for all
trials) (Fig. 4C and Fig. S4C). However, the slowdown magni-
tude was small (s = −1.9 ± 0.0%, n = 5), suggesting that even
though the topology of the time-aggregated network plays a
partial role in the enhancement of spreading, the predominant
driver is network temporal structure.
To test whether the speedup of spreading is resilient to pertur-

bation, we collected returning foraging bees as they attempted to
reenter their hives on the seventh day of the experiment; 13–46% of
each colony was depopulated (Table S1). In all five trials, spreading
continued to be faster in bee networks constructed from the in-
teractions that took place on the day after the forager removal
relative to the temporally and topologically randomized reference
networks (conditional uniform graph test, n = 100, P < 0.01 for all
trials). This demonstrates that accelerated spreading is robust to a
strong perturbation and manifests even on the timescale of a single
day. We speculate that the observed resiliency is in part rooted in
individual anonymity in the hive; social insect workers living in large
colonies apparently do not recognize each other as individuals (35).
This means that bees interact opportunistically, which likely con-
tributes to the resiliency of the trophallaxis network.

Conclusions
We have discovered a strong similarity (burstiness) between the
temporal structure of communication networks of honeybees and
humans. A similarity in species separated by over 600 million years
of evolution likely reflects a fundamental property of social in-
teractions. However, despite this commonality, the networks of
the two species appear to operate differently in terms of spreading

dynamics. This striking difference provides a fresh perspective on
a commonly held assumption about the interplay of temporal
structures and spreading in real-world communication networks,
which should inform future models of large-scale social organi-
zation, information transmission, and disease spread.
Although in our simulations most bees were “infected” quickly,

spreading dynamics exhibited an interesting dichotomy. On short
timescales, spreading was faster than expected while on longer

Fig. 2. Illustration of the geometric procedure for detecting potential
trophallaxis partners. Dashed squares Ci and Cj are the bCodes of bee i and j,
respectively. Each arrow represents the bCode orientation vector that cor-
responds to the direction a bee is facing. Points Pi and Pj are the most an-
terior point on the anteroposterior axis of the two bees, and di,j is the
distance between these points. If di,j is within a given range and the sum of
the angles γi and γj is smaller than a given threshold (i.e., bees i and j are
close to and face each other), then we consider bees i and j potential
trophallaxis partners.

Fig. 3. Automated confirmation of trophallaxis behavior (see SI Materials and
Methods for details). (A) Image of two bees geometrically predicted to be
engaged in trophallaxis (Center). (B) Simplified version of the image in A, in
which pixel intensities above a threshold value have been set to the threshold
value. Note that this procedure removes most of the honeycomb structure and
the reflections on the comb contents. Bright colors delineate the area formed
by two intersecting half-disks that will be searched for a trophallaxis contact
(search area). (C) Result of thresholding the image in B. White areas are con-
sidered to be the image background. Black and gray represent the image
foreground. Black delineates the trophallaxis search area. (D) Local thickness
(45) of the foreground areas in C. Locally thin pixels are drawnwith cold colors.
These pixels mark image areas that show thin structures like a bee’s proboscis
or her antennae. Locally thicker pixels are drawn with increasingly warmer
colors. Rich colors highlight the trophallaxis search area. (E) Skeleton of the
image in C. The skeleton defines paths that can be traversed to test whether
there is a thin structure (green) connecting the front or sides of the fitted head
models (magenta). The skeleton underneath the head models was removed to
eliminate paths passing through the heads. Rich colors highlight the trophal-
laxis search area. (F) Front and sides of the fitted head model (magenta) of the
two potential trophallaxis partners and a path through a locally thin search
area (green) drawn onto the image in A. The path traverses the proboscis
(tongue) of the receiving bee.
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timescales it was inhibited. Such spreading dynamics were also
observed in Temnothorax rugatulus ants (36) but with a different
reference model. Although the ant spreading dynamics were
classified as slow, the early-time behavior appears qualitatively
similar to our results (see figure 2 in ref. 36). It is therefore
tempting to speculate that dichotomous spreading dynamics may
be characteristic of highly social insects.
At first blush, one might hypothesize that the spreading di-

chotomy observed here could be the result of the bee’s inability
to structure social interactions so as to reach everyone quickly,
or a reflection of their ability to respond differently at different
timescales, for example in the context of foraging. In the latter
viewpoint, the trophallaxis network could play a role in medi-
ating different response times by communicating changes in food
resource availability quickly to foragers, but more slowly to hive
bees. However, we caution against interpreting our results in this
way, because the apparent inhibition at long timescales naturally
follows from the fact that the waiting time probability density is
fat-tailed, so that the approach to saturation is generally slower
than for a purely memoryless process (13, 14). Thus, the di-
chotomous spreading dynamics might be an epiphenomenon of
the heavy-tailed waiting time distribution discovered here and
remains to be understood more fully in future theoretical work.
A social network that supports spreading well can be expected

to benefit communication and coordination, but also the trans-
mission of disease. Accelerated spreading is therefore seemingly
at odds with some ideas of organizational immunity, which pre-
dict that interactions among members of insect societies should
be structured to slow down disease transmission (37). Perhaps
honeybee colonies self-organize to achieve a trade-off—fast infor-
mation spreading and reduced disease transmission—by dynamically
adapting interaction patterns to the health status of individual
bees. The techniques we reported here will allow researchers to
study this and other topics related to the mechanisms and ecology
of communication networks in nonhuman societies.

Materials and Methods
Experiments. Colonies were established with 1,200 barcoded, 1-d-old worker
bees and one unrelated, naturally mated queen that was also barcoded. Each
colony was provided with the same amount of honey and artificial “bee

bread.” We provided sufficient honey to feed the entire colony for the du-
ration of the experiment and enough bee bread for 2 d. After sundown on the
second or third day of the experiment, we opened the hive entrance to allow
workers to begin foraging. Five days later, we removed as many foragers as
possible from the colony. We performed five separate trials of this experiment
in summer and autumn of 2013. Further details are described in SI Text.

Networks. We constructed one temporal network from the trophallaxis de-
tections in each trial. Each node in such a temporal network corresponds to one
bee. Pairs of distinct nodes (i, j) were connected with an undirected edge if the
corresponding individuals interacted at least once during the observation
period. We assigned a list of elapsed times θi,j, counting from the beginning of
the experiment and with a resolution of 1 s, to each edge to specify when each
trophallaxis contact was initiated. These times enabled our spreading simula-
tions to maintain the precise time order of interactions.

Bees that did not interact were not included in the networks. This led to
the omission of at most one individual per trial. In the networks used in the
primary analysis, the queen was always excluded, because social interactions
with the queen are different from worker–worker interactions (17) in ways
that resulted in a high number of false-positive trophallaxis detections
(SI Text). However, to explore the sensitivity of our results to the exclusion of
the queen, we also performed a subset of our analyses on networks in which
interactions with the queen were retained (SI Text).

Burstiness. Bursty event sequences follownon-Poissonian statistics, characterized
by bouts of rapidly occurring events that are separated by potentially long
periods of inactivity. Toquantify theburstiness of trophallaxis,we considered the

A B C

Fig. 4. Simulated spreading in honeybee trophallaxis networks is faster than in randomized reference networks, despite bursty interaction patterns. Panels show
data from trial 1; see Fig. S4 for trials 2–5, which yielded similar results. (A) Distribution of log-binned waiting times between interactions for the empirical
network of trial 1 (black circles) and 100 temporally randomized reference networks (magenta crosses). Dashed line: power law fit to the empirical waiting times
(see Table 1 for exponents of the fit). The dotted line highlights the threshold W = 168 s that distinguishes short waiting times from long waiting times. Lanes
labeled s, m, h, and d denote seconds, minutes, hours, and days, respectively. (B) Mean fraction of bees “infected” via deterministic SI spreading (mean prevalence,
controlled for mortality), averaged over 1,000 simulation runs, as a function of spreading time. Solid black line: empirical trophallaxis network; magenta dashed
lines: 100 temporally randomized reference networks; green lines: 100 temporally and topologically randomized reference networks; dotted black line: time when
the mean prevalence reaches 20% in the empirical network. (Inset) Mean prevalence as a function of spreading time until almost all bees have been “infected.”
(C) Histogram of the mean time required to reach 20% prevalence (t20%) for the 100 temporally randomized reference networks (magenta) and the 100 tem-
porally and topologically randomized reference networks (green). Arrow indicates when the prevalence reaches 20% in the empirical network.

Table 1. Honeybee trophallaxis network features

Trial V E I T, d B α s c p̽

1 1,164 200,723 302,221 11 0.33 1.18 0.53 3.99 0.82
2 1,140 143,571 205,787 8 0.32 1.18 0.44 3.21 0.73
3 1,138 129,653 191,795 9 0.27 1.18 0.24 1.92 0.68
4 1,174 174,317 259,923 10 0.34 1.18 0.57 4.21 0.83
5 1,170 212,685 329,170 10 0.39 1.19 0.56 4.06 0.85

For each trial we show: the number of nodes (V), edges (E), and interac-
tions (I); sampling time in days (T); burstiness coefficient of trophallaxis (B);
exponent of the power law fit to the waiting time distribution (α); speedup
of spreading in terms of time (s) and mean prevalence (c); and grand mean
prevalence at the end of the period of accelerated spreading (p̽).
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time intervals τ during which a bee was not involved in any interaction (waiting
times). These waiting times were aggregated across individuals and the burst-
iness coefficient B (33) was calculated. This quantity is 0 if trophallaxis is Pois-
sonian and tends to 1 (−1) as trophallaxis becomes increasingly bursty (periodic).

To obtain an estimate of the waiting time distribution P(τ), waiting times
were pooled across bees and binned logarithmically into 24 bins. Bin lengths
were chosen so that they were uniform in log space for τ > 10 s; since waiting
times could be resolved with 1-s precision, smaller waiting times had to be
dealt with separately, and were binned into two logarithmically spaced bins
for 1 s < τ < 10 s. Maximum-likelihood estimates of the power law exponents
were obtained using the “powerlaw” Python package (38) with the fit pa-
rameter xmin set to 1 s.

Spreading Dynamics. We used the deterministic SI model (34) to simulate
spreading dynamics of information or disease on various temporal networks.
In this model, individuals are in one of two states, “susceptible” or “in-
fected,” and an infected individual “infects” a susceptible individual with a
certain probability when they come in contact. Since we did not study the
spread of a specific piece of information or pathogen, we set the infection
probability to 1 to obtain an empirical estimate of the upper bound for the
speed of spreading via trophallaxis. We furthermore assume that an in-
fection can spread bidirectionally because (i) we studied the pattern of
behavioral interactions, and not unidirectional fluid flow, and (ii) the
transmission of information (26) or disease (39) does not necessarily follow
the direction of fluid flow. Each simulation was initiated by setting all bees
to susceptible, choosing an interaction uniformly at random, and infecting
the two bees involved in that interaction. Spreading dynamics were then
simulated over a 10-h time window of the temporal network, and quantified
in terms of the fraction of infected bees alive p(t) = v(t)/V(t) (prevalence),
where v(t) is the number of infected bees at time t after the first infection,
and V(t) is the colony size at time t. Note that due to mortality, v(t) can
either increase or decrease, while V(t) decreases monotonically. To obtain a
more robust estimate of p(t), we repeated the SI simulation 1,000 times for
each temporal network, using different initial conditions, and calculated the
average prevalence p̄(t) after an elapsed time t.

To evaluate whether the temporal structure of the trophallaxis network
facilitates spreading, we compared the empirical network against an ensemble
of N = 100 randomized reference networks. This ensemble was created by
randomizing the original trophallaxis events with a modified version of the
randomly permuted times (RP) null model (5), which shuffles the times among
the original trophallaxis contacts. Our modification ensured that a bee was not
assigned to a trophallaxis contact occurring after her time of death. This is
necessary since otherwise the average waiting time for individuals dying be-
fore the end of a trial could increase, which would lead to an artificial slow-
down of spreading. Temporal randomization destroys burstiness and temporal
correlations but maintains all other features of the original network, in-
cluding the number of contacts per node and edge, colony-level circadian
rhythms, and the topology of the time-aggregated network.

To assess the effect of network temporal structure on spreading speed, we
used a conditional uniform graph test (40) to compare the time te when, for
the first time, an average fraction p̄e(te) = 0.2 of bees is infected in the em-
pirical network to the times t1≤k≤N when, for the first time, the same average
fraction p̄k(tk) = 0.2 of bees is infected in each of the temporally randomized
networks. To determine whether spreading speed in the empirical network is
statistically different from the ensemble of randomized reference networks at
the 0.05 significance level, we used the method by ref. 41. The relative
speedup of spreading s was calculated by averaging (tk − te)/te over the en-
semble of temporally randomized networks. To obtain the speedup of
spreading in terms of prevalence c, we averaged 0.2/p̄k(t

e) over the ensemble
of temporally randomized networks.

To further characterize the time period of accelerated spreading through
the empirical network, we computed the prevalence at the end of that
period. Specifically, we calculated the mean prevalence in each temporally
randomized network at the times t1̂≤k≤N when the mean prevalence in the
randomized network was equal to the mean prevalence in the empirical
network, p̄k(tk̂) = p̄e(tk̂). We restricted tk̂ to spreading durations longer than
5 min to account for the fact that early spreading dynamics also depend
on the seed interaction with which the spreading simulation is initiated.
The prevalence p̽ at the end of the accelerated spreading period was

calculated by averaging p̄k(tk̂) over the ensemble of temporally randomized
networks.

We tested whether the topology of the time-aggregated trophallaxis net-
work affects spreading dynamics, using a second ensemble of N randomized
reference networks. This second ensemble was created by first randomly
rewiring the edges of the original network with the randomized edges null
model (5), and then performing the temporal randomization described above.
The resulting reference networks retain the connectedness, degree distribu-
tion, and circadian rhythms of the original network, but have an otherwise
randomized topology and temporal structure. To assess the significance of
network topology, we contrasted the times tk for the first ensemble with the
times tk for the second ensemble, using a Mann–Whitney U test. The relative
speedup of spreading s was defined as the difference between the average of
the times tk for the second ensemble and that for the first ensemble, nor-
malized by the average of the times for the first ensemble.

To explore the sensitivity of our results to the false-negative rate of the
trophallaxis predictor, we also performed a subset of the spreading analyses
on networks created from a random subsample of the interactions (SI Text).
This analysis showed that accelerated spreading can also be observed at a
higher false-negative rate than that of the trophallaxis predictor.

Robustness. To assess whether accelerated spreading is robust to a demo-
graphic perturbation, we simulated, for each trial, deterministic SI spreading on
a daily temporal network constructed from the interactions that took place on
the day after the forager removal. The sampling time for the daily temporal
network was bounded by sunrise on the day after the forager removal and
sunrise on the following day. Accelerated spreading was said to be robust if a
conditional uniform graph test of the empirical time te and the times tk of an
ensemble of topologically and temporally randomized reference networks
was statistically significant at the 0.05 level.

Software. Printable bCodes were made with custom software that builds
on the software library ZXing 1.47 (42), which we modified to work with
bCodes. Images of barcoded bees were acquired with StreamPix 5 (NorPix).
Images were resized and sharpened using ImageMagick, version 6.7.8–9
(ImageMagick Studio LLC). bCodes were detected with custom software that
builds on the modified version of ZXing mentioned above. Trophallaxis was
detected with custom software that builds on ImageJ 1.47 (43) and the
ImageJ plugins Auto Local Threshold 1.5 (44) and Local Thickness 3.1 (45).
Detected trophallaxis interactions were analyzed with scripts written in Py-
thon 2.7 and in R 3.2.0, using the packages sqldf 0.4.10 (46) and igraph 1.0.1
(47). Statistical analyses were performed in R.

Data and Code Availability. Temporal network datasets and custom computer
code for producing printable bCode images, detecting bCodes in digital images,
and detecting trophallaxis are publicly available at www.beemonitoring.igb.
illinois.edu.
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SI Materials and Methods
Experiments.
Animals. Bees were obtained from source colonies maintained
according to standard techniques at the University of Illinois Bee
Research Facility in Urbana, Illinois. Source colonies represented
a mixture of European subspecies, predominantly Apis mellifera
ligustica, and were each headed by a naturally mated queen.
To obtain 1-d-old adult worker bees, we removed honeycomb
frames containing sealed pupae from source colonies, placed
them in a Styrofoam box, and transferred them to an incubator
where they were kept in specialized emergence cages at 34 °C
and 50% relative humidity.
Colony setup. Colonies were established with 1,200 1-d-old worker
bees and one unrelated, naturally mated queen. Previous scien-
tific studies successfully employed such colonies that were either
of a similar size (48) or were much smaller (49). Each colony was
provided with the same amount of honey and artificial “bee
bread” (a mixture of 10 parts pollen, 9 parts honey, and 1 part
water). The top 16 rows of honeycomb cells were provisioned
with 150 g of honey, and the two rows below the honey cells were
provisioned with 15 g of artificial bee bread. To help minimize
food deposits on the hive window, we filled cells to only about
one-half of their depth.
Workers were barcoded in two groups of ∼700 bees each.

Group 1 emerged over 9 h at night before the day the colony was
set up. Group 2 emerged over 9 h in the morning of the day the
colony was established. Both groups emerged from the same
brood frames. Workers were brushed into a plastic box with walls
that were painted with Insect-A-Slip (BioQuip Products), which
prevents bees from crawling out of the box. Bees were stored in
an incubator until after barcoding and were fed honey ad libitum
throughout the day.
To attach a barcode to a bee, we first anesthetized her on ice.

She was then picked up with a pair of blunt featherweight forceps
(BioQuip Products), and a small drop of Loctite Super Glue Gel
Control (Henkel) was applied to her thorax. Next, a bCode was
picked up with a moistened Plain Wood Applicator (Fisher
Scientific) and centered on the thorax. The bCode was positioned
so that its orientation vector was parallel to the anteroposterior
axis of the bee. We always attached a bCode in this way to enable
us to infer the bee’s approximate orientation from the orientation
of the bCode. Marked bees were placed individually in a Petri
dish until they recovered. The entire barcoding procedure for a
single bee lasted 1–2 min.
Both groups of barcoded bees were simultaneously moved into

the observation hive. Bees were examined for signs of deformed
wing virus infection, Varroa destructor mite presence, and glue
residue on the bCode, and discarded if necessary. An equal
number of bees from each group were individually transferred
into the observation hive through a Plexiglas window with re-
salable openings. Next, the queen was barcoded and added to
the colony. Barcoding the queen proceeded in a similar manner
to barcoding a worker bee, except that she was anesthetized with
CO2. After the colony was established, we exchanged the Plexiglas
window for a glass window without openings.
The hive was placed into the observation hive room and

temporarily warmed to ∼37 °C to encourage the bees to spread
out. Bees were allowed to acclimate until sunrise on the next day.
At sunrise we started recording images. At this point workers
were on average 24 h old.
Colony maintenance. Over the course of a day, the hive window
acquired dirt from bees touching it with their bodies or walking on

it. We therefore changed the window daily in the morning and at
night to ensure a high detection rate throughout the experiment.
Forager depletion.After sundown on the second or third day of the
experiment, we removed the gate that prevented bees from
accessing the entrance ramp (Table S1). This allowed workers to
exit the hive and to begin foraging.
On the fifth day after opening the hive entrance, we removed as

many foragers as possible from the colony (Table S1). The times
of the removal, originally scheduled for 8 AM until 8 PM, were
adjusted according to the activity at the hive entrance. If no bees
foraged, we began (ended) the removal later (earlier) (Table S1).
During the removal, we alternated between collecting returning
bees and passively observing the hive entrance. Collections were
performed for 5 min with a portable vacuum cleaner (BioQuip
Products). Bees were allowed to enter the hive during observa-
tions. If we noticed orientation flights, which are taken by bees
before the onset of foraging to learn the location of their hive
(50), we waited until 15 min after the cloud of orienting bees
disappeared before resuming collections. No collections were
performed if it rained. All collected bees were frozen.
Trials.We performed five separate trials in summer and autumn of
2013. All trials followed the same general experimental design.
However, trials also differed, for example due to weather con-
ditions and adjustments to the protocol. Most of the differences
are listed in Table S1. Further differences are detailed below.
During trial 1, the hive window was changed only once per day.

We experienced a camera outage of ∼30 min. In trial 2, one of the
eight front lights did not work for the first 35 h of the experiment.
However, since our computer vision algorithms are robust to
changes in illumination, we expect this to have had a negligible
effect on our results. In addition, we experienced two camera
outages of ∼40 and 20 min. In trial 3, the brood frames did not
yield enough bees for the second group of bees. We therefore
supplemented this group with a small number of bees that were at
most 3 h younger than intended. In trial 4, bees clustered on the
honeycomb during the first 12 h of the experiment rather than
spreading out as expected. In trial 5, the white ceiling lights were
on for at most 9 h during daytime on day 1. After sunset on the
second day, we turned on the ventilation system to draw a weak air
current through the hive entrance into the room to discourage
bees from temporarily congregating in the entrance tube, a be-
havior that was also observed in other trials. The forager depletion
was postponed because it rained (Table S1).

Barcodes.
Design.We developed a custom matrix barcode, called “bCode,” to
enable a computer to automatically identify bees and track their
position and orientation (Fig. S1). The bCode design is loosely
based on the design of QR codes but has been tailored to suit our
purposes with respect to physical size, data storage capacity, and
readability. A bCode consists of small black squares that are
arranged in a square lattice on a white background. The squares in
the top-left, top-right, and bottom-left corner form patterns that
are the same for all bCodes. Together with the white border, these
fixed patterns constitute the bCode template. The finder pattern in
the top-left corner is for automatically locating bCodes in a digital
image. Each of the two smaller alignment patterns in the top-right
and bottom-left corner marks a known point on the bCode surface.
Together with the finder pattern, they allow for corrections to
visual distortions resulting from a rotation of the bCode in three
dimensions. They furthermore allow for determining the projected
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bCode orientation, defined in terms of a vector in the plane of the
image that is parallel to the left and right edge of the bCode.
Squares in the area of the bCode that are not occupied by the

template represent 27 data bits. Of these, 11 bits encode an
identifier, which can be used to distinguish a maximum of 2,048
bees. The remaining 16 bits are the parity symbols of a (4, 2) Reed–
Solomon error-correcting code (51) with 8-bit symbols. The parity
symbols are calculated from the identifier after converting it to a
16-bit word. They make it possible to automatically detect if the
identifier was properly decoded and to correct certain decoding
errors, ensuring that a bCode may be read correctly even if a
portion is damaged, dirty, or otherwise hidden.
Manufacture. Printable bCode images had a side length of 66 dots.
We anticipated that color would bleed from black squares into
white squares during printing and therefore drew white squares
slightly bigger than black squares. Additionally, for white squares
that diagonally touch a black square, the corner dot of the black
square was drawn in white. These two measures ensured ap-
propriately sized squares with well-defined corners. bCodes were
printed by Reliance Label Solutions at a resolution of 800 dpi on
Food and Drug Administration-approved 70# C1S Litho paper
(Avery Dennison Label and Packaging Materials) and protected
with Matte Self Wound Polypropylene laminate (QSPAC). Printed
bCodes were hand-cut on a wooden board using a razor blade and a
steel ruler as a guide. Individual bCodes had a side length of 2.1 mm
and weighed 0.6 mg, corresponding to 0.7% of the average mass of
an adult worker honeybee, or 1.7% of the amount of honey a
worker carries during swarming (17).
Read error rate. Pilot studies were conducted to verify that the
identifier encoded on a bCode could be read reliably under ex-
perimental conditions. Verification was performed by manual
visual comparison of the image of an actual bCode with the image
of a computer-generated bCode, where the latter encoded the
identifier our software had decoded from the actual bCode. To
facilitate this comparison, the original bCode image was rotated
“upright,” magnified, and displayed side-by-side on a monitor
with the computer-generated bCode image. If either the area
encoding the identifier or the area encoding parity information
of both bCodes were the same, then the original bCode was
considered to have been read successfully. Obstructions of the
original bCode counted as a difference if they were not mirrored
by the computer-generated bCode image.
We performed this verification on 5,000 randomly selected

bCode images from a 1-wk-long test trial. The setup used in this
trial differed from the setup used for experiments in that it did not
include a backlight, four deep-red L300-660W linear lights (Smart
Vision Lights) illuminated the hive, and there was no filter on the
lens. bCodes differed in that a white grid separated squares to
ensure well-defined square edges and corners. We expect that
these differences had a marginal effect on our error rate estimate
for the bCodes used in the actual experiment. An equal number of
bCode images were randomly assigned to two human evaluators.
They determined that 98.58 ± 0.2% of the bCodes were read
correctly by the computer program.
Detection rate. To obtain an estimate of the detection rate, we
manually counted all bees that were not automatically identified
in each of 79 images. These images were sampled every 3 h from
trial 3. Of the bees with a bCode that was at least partially visible,
87 ± 2% were automatically detected. Out of all bees in an
image, including bees with a bCode that was not visible, we au-
tomatically detected 54 ± 9%. Most of the bees with an invisible
bCode were either inside a honeycomb cell (75 ± 9%) or walked
on the hive window (23 ± 9%) with their bCode facing the comb.
Effect on bees. To test whether the barcoding procedure or the
bCode itself affected survival, we set up five colonies for a pilot
study. Each colony contained 999 1-d-old worker bees and one
queen. Equal proportions of the worker bees were unmarked,
marked with a glue dot on their thorax, or marked with a bCode.

Honey was provided ad libitum, as well as varying amounts of
either pollen or artificial bee bread. The colony entrance was kept
closed for 2–3 d to ensure that the bees did not attempt to fly
before being mature enough to do so (52). At the end of day 7,
we killed the bees and counted the number of survivors in each
group and the number of bees that lost their glue dot or bCode.
On average, survival of bees without a bCode, bees with a glue

dot, and barcoded bees was 83.2%, 81%, and 78.2%, respectively.
The difference in survival between the three groups was not
statistically significant (Friedman test, X2 = 5.2, n = 5, P > 0.07).
For barcoded workers, the average daily mortality during the
time the hive entrance was open was 4.5%. Mortality before
opening the entrance was negligible for all three groups.
Casual observations of barcoded workers and workers without

a bCode suggest that barcoded bees behaved normally. The
overall activity level of barcoded bees and bees without a bCode
appeared to be similar, and barcoded individuals performed all
tasks, including but not limited to cell cleaning, brood care, at-
tending the queen, undertaking, nectar processing, capping cells,
guarding, and foraging. In casual observations, we noticed no
apparent differences with respect to the frequency of antennal
contacts and trophallaxis within or between barcoded workers and
workers without a bCode.
Durability.By the evening of day 7 during the pilot studies with the
five colonies, an average of 1.6% of the bees had lost their glue
dot or bCode. Thus, at most 3.2% of the bCodes had fallen off in
each test colony. bCodes that were still attached to bees showed
no signs of wear. In an additional long-term experiment with a
colony that initially contained 1,200 barcoded workers and 1 bar-
coded queen, scanning of some of the bCodes revealed no obvious
deterioration of bCode material after 4 wk, except for a thin patina
on the laminate of some bCodes that had no effect on bCode
readability.

Tracking.
Image preprocessing. To increase the probability of detecting and
correctly decoding bCodes, we preprocessed each camera image.
Images were resized to 140% of their original resolution. Each
resized image was sharpened by digital unsharp masking (53) with
a radius of four pixels, a sigma of 2, an amount of 400%, and a
threshold of 0. Parameters for image preprocessing were em-
pirically determined.
Barcode detection. We detected potential bCode locations by first
converting the preprocessed camera image to a binary repre-
sentation. This was accomplished by setting all pixels below a
threshold b to black and all other pixels to white. Pixel rows and
columns of the binary image were then scanned for the charac-
teristic finder pattern of bCodes—an alternating sequence of
black-and-white pixels with a length ratio of 1:1:2:1:1. Deviations
from this ratio of up to 50% were allowed. A pixel that was part
of both a horizontal and a vertical finder pattern sequence
marked a potential bCode location.
Next, the immediate image region around a potential bCode

location was searched for alignment patterns. We detected
alignment patterns using the same method as employed for the
finder pattern. However, to find alignment patterns, we searched
for a sequence of black, white, and black pixels with a length ratio
of 1:2:1. If more than one alignment pattern was found, we used
the finder pattern and each possible combination of two align-
ment patterns to determine the image area of candidate bCodes.
If only one alignment pattern was detected, we used its location
and the location of the finder pattern to estimate the two possible
positions of the missing alignment pattern before determining
candidate bCode regions.
Candidate bCode images were extracted from the binary image

representation and information about the actual position and
the expected position of the three fixed patterns was used to
correct perspective distortion. We then determined the color of
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the squares that make up a bCode. The color of the invariant
squares was compared against the bCode template. If less than
85% of the template was preserved, we discarded the candidate
bCode image. The white bCode border was excluded from this
comparison as it was often badly conserved. If the bCode image
was well conserved, we decoded and verified the identifier.
Identifiers that neither passed error detection nor error correc-
tion were retained, but flagged as being misread.
To make bCode detection robust to inhomogeneous illumi-

nation, we repeated the procedure described above using em-
pirically determined thresholds b ∈ {10 g j 3 ≤ g ≤ 11}. bCodes
that were detected at multiple thresholds in the same image were
considered to belong to the same bee if the distance between the
bCode centers was smaller than one-half the bCode side length.
The images of these bCodes were grouped and the average lo-
cation of the grouped bCodes and their most common identifier
were recorded.
Tracking data postprocessing. Tracking data were postprocessed to
correct tracking errors and to facilitate subsequent behavioral
analyses. First, we deleted records of bCodes from which the
identifier could not be decoded correctly. Second, the records of
bCodes that were too big or too small to be real were removed.
Third, we deleted the records of all bCodes with an identifier that
occurred twice per time point. Fourth, records of bCodes that
moved faster than 5 cm/s between successive time points were
filtered out, as such fast movement exceeds the mean walking
speed of a bee [3 cm/s (54)] and likely resulted from incorrectly
decoded identifiers.
To further facilitate behavioral analysis, we performed the two

additional postprocessing steps described below.
First, we removed all records of a bee after her time of death.

This was necessary because dead bees may fall to the hive floor
with their barcode facing the camera. We defined a bee’s time of
death as the last time when she was observed for at least 4 min
during a 5-min window and was on average located above the
third row of honeycomb cells counted from the floor of the hive.
Manual verification of the automatically determined times of

death was carried out for all 2,047 bees detected in trial 3 (note that
due to bCode read errors, the number of bees detected was greater
than the actual colony size). A bee was considered alive if (i) her
mean movement speed fluctuated and was low but not zero, (ii)
her mean height above the hive floor fluctuated at a high fre-
quency and she was mostly located above the third row of cells,
and (iii) her mean detection rate fluctuated at a high frequency
and went regularly beyond the 2,000 detections per h mark.
A comparison of automatically andmanually predicted times of

death showed that both times closely agreed with each other; only
0.6% of the bees were assigned a considerably different time of
death. Note that incorrectly predicted times of death also include
the failure to reject spurious “bees” that did not actually exist.
Second, we deleted all records of bees with a bCode that was

detected much better or worse than the majority of the bCodes. A
bCode may, for example, perform differently if it is permanently
dirty. To identify such barcodes, we calculated for each bCode the
fraction of interdetection durations lasting 1 s out of the inter-
detection durations lasting at most 5 s. We then used the inter-
quartile range rule to determine outliers, which were deleted from
the tracking data. This resulted in the removal of 43 ± 14.61 in-
dividuals per trial. The queen was excluded from this post-
processing step. Together, all postprocessing steps resulted in the
removal of 5.9 ± 0.91% of the tracking records per trial.

Experimental Setup.
Observation hive. Bees were housed in a one-sided glass-walled
observation hive with one honeycomb (Fig. S3). The hive frame
was made from four wooden pieces. These pieces fit tightly around
a white plastic honeycomb (Honey Super Cell) that was cut to a size
of 348 × 232 mm to match the dimension of the camera sensor.

We chose a plastic honeycomb rather than one made from natural
beeswax because its white color provides a better contrast to the
body of honeybees and therefore simplifies image processing.
Additionally, the plastic honeycomb is perfectly straight and can-
not be altered by the bees. This enabled us to precisely control the
maximum distance between the hive window and the comb.
The honeycomb was covered by a glass window. The distance

between the window and the honeycomb was 8 mm. This gap
was wide enough for bees to perform all behaviors normally, yet
narrow enough to ensure that bees could not crawl over each
other and thus hide their barcodes from the camera. The window
was secured with a set of clamps and seated in rails that were
attached to the top and bottom bar of the frame, respectively. The
rails allowed us to regularly exchange a dirty hive window for a
clean one with minimal disturbance to the bees. Condensation on
the window was prevented by ventilation holes between the rails
and the hive frame.
The lower-right corner of the hive frame was cut out to allow

bees to move from the honeycomb onto a small ramp that led to a
52 × 8-mm entrance tunnel that passed through the hive frame.
The tunnel exit on the front of the hive frame was covered with a
wire mesh to permit wind blowing into the tunnel to exit into the
room instead of into the hive. The tunnel exit on the back of the
hive frame was fitted with a round plastic connector that allowed
us to attach the hive to a tube with an inner diameter of 52 mm.
The inside of the connector contained two ramps that provided a
gentle transition from the tube into the entrance tunnel.
Lights.Bees were illuminated with 850-nm infrared light, invisible to
honeybees (32), from eight L300-850W linear lights (Smart Vision
Lights). Two of these lights were attached on each side of a 550 ×
430-mm aluminum frame, which was mounted on a tripod and
positioned at a distance of 0.8 m in front of the hive. To further
increase the contrast between the honeycomb and the bees, we
also illuminated the back of the honeycomb with 850-nm infrared
light from one SOBL-CBO-350x300–850 backlight (Smart Vision
Lights).
In the first three trials, at least some lights were on throughout

the trial (Table S1). During these trials the backlight was cooled by
six IXP-34-16 Case Fans (SilenXCorporation) to reduce heat stress
on the bees. Fans were not in contact with the hive. During the last
two trials, all lights were controlled via a CTL-IO-4 I/O Module
(Smart Vision Lights), which enabled the camera to briefly turn
on the lights when it captured an image. During these trials, the
backlight was directly attached to the back of the observation hive
(Fig. S3), since it no longer required cooling.
Camera. Images were recorded with a monochrome Prosilica
GX6600 machine vision camera (Allied Vision). The camera was
fitted with a Nikkor AF 135 mm f/2 D DC prime lens (Nikon).
The lens was covered by a B+W 72-mm IR Dark Red (092M)
filter (Schneider Optics). This filter blocks visible light and thus
ensured that images were not overexposed when the deep-red
overhead light was turned on during manual observations. The
camera was mounted on a tripod and placed 1.3 m in front of the
hive so that the entire honeycomb was visible. At the camera’s
resolution of 6,576 × 4,384 pixels, bCodes had a side length of
∼38 pixels in the captured images.
Computer. The camera was connected to the Ethernet port of a
standard personal computer with a 3.3-GHz Intel i3 processor and
4-GB RAM. This computer captured 1 image/s and saved it to a
redundant array of independent disks with 16-TB storage space.
At a frame rate of 1 image/s, this disk array provided enough
storage space to continuously record for 26 d. Images were saved
as JPEGs with a quality setting of 90, such that total file sizes for
each 8- to 11-d trial were 4–6 TB.
Observation hive room. Experimental colonies were maintained in a
dedicated room in the University of Illinois Bee Research Facility
in Urbana, Illinois (Fig. 1A). In the west wall of this room was a
305-mm-long tube to which we connected the observation hive.
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This enabled the bees to leave the hive to forage normally out-
doors. Ants and other insects were prevented from entering the
hive by isolating it with Tangle-Trap Adhesive (Tanglefoot) and
a water barrier.
The room was completely dark during experiments, except

for the duration of manual observations when we reflected the
light of a deep-red L300-660W linear light (Smart Vision Lights),
which bees cannot see well, off the wall opposite the observation
hive. The door of the observation hive room was covered with an
opaque black cloth to reduce light exposure when an observer
entered the room.
To control hive temperature, we isolated the room from the air

conditioning system of the building and used a space heater to
maintain an average room temperature between 31.7 and 32.8 °C
(Table S1). This resulted in an average hive temperature be-
tween 33.5 and 35.1 °C (Table S1). Hive temperature was mea-
sured with a U12-006 data logger (Onset Computer Corporation)
through the center of the honeycomb. Room temperature was
measured with a U12-011 data logger (Onset Computer Corpo-
ration) that was located next to the observation hive.

Trophallaxis Detection.
General procedure. To detect instances of trophallaxis in a single
image, we first identified pairs of bees that were close and faced
each other as potential trophallaxis partners. Each pair was then
further examined to confirm that the two bees were indeed en-
gaged in trophallaxis, using custom computer-vision algorithms.
These algorithms first attempted to determine the exact shape,
size, position, and orientation of the head of both bees. They then
tested whether the heads were connected by a thin, dark shape
that resembles a proboscis or antenna. If such a shape was found,
we recorded a trophallaxis event. To reduce the number of false
positives, trophallaxis predictions were integrated over multiple
images during postprocessing. Details of our trophallaxis de-
tection procedure are outlined below.
Potential partners. We defined potential trophallaxis partners geo-
metrically as pairs of bees (i, j) that are within reach and face each
other (Figs. 2 and 3A). To identify bees that are within reach, we
calculated the distance di,j between the most anterior point P on
each bee’s anteroposterior axis that is still on her body, assuming
that the anteroposterior axis passes through the bCode center and
is parallel to the bCode orientation vector o. Bees were classified
as within reach if Dmin ≤ di, j ≤ Dmax holds for threshold param-
eters Dmin and Dmax. For pairs of bees (i, j) that passed this cri-
terion, we calculated for bee i the angle γi between her bCode
orientation vector oi and the vector from point Pi to point Pj. For
bee j, the angle γj between oj and the vector from Pj to Pi was
calculated. If γi + γj ≤ Γmax holds for threshold parameter Γmax, we
classified the two bees as facing each other and considered them
to be potential trophallaxis partners.
Head detection. As a first step to automatically confirming that
potential trophallaxis partners were indeed engaged in trophal-
laxis, we determined the shape, size, position, and orientation of
the head of both bees. Heads were modeled as a closed path
composed of four quadratic Bézier curves L(δ), R(δ), F(δ), and
B(δ), which represent the left eye, right eye, front of the head,
and back of the head, respectively (Fig. S2A). The parameter δ
was restricted to the range 0 ≤ δ ≤ 1, with the extremes denoting
the end points of a curve. We randomly generated 40 candidate
head models for each bee, defined by parameters describing the
end points and curvature of the four Bézier curves, and used particle
swarm optimization (55) to iteratively improve the match of these
models to the image region estimated to contain a bee’s head. After
50 iterations, the model that best matched the image was selected
for each bee (Fig. S2B).
To quantify howwell a headmodelmatches the image, the particle

swarm optimizer considered the three criteria described below.

First, we favored head models with dark pixels in the area of the
model that includes the eyes and the vertex (top of the head). This
area A was enclosed by curves L(δ), B(δ), R(δ), and line segments
connecting points F(0) and F(1) to the head center P ̕ (Fig. S2A).
Point P ̕ was located at the average position of the end points of
L(δ) and R(δ). We thus excluded the area of the head model that
is most variable between bees due to hair color differences. We
then averaged the deviation over all pixel intensities a inside A
from the expected pixel intensityG as h =mean(max(ja −Gj,G)).
A head model is more likely to fit an actual head if h is closer to 0.
Second, we expect to see a light intensity transition between the

honeycomb (white) and the eyes of a bee (black). To test whether
the curves L(δ) and R(δ) were positioned over such a transition,
we first approximated the image gradient by convolving the orig-
inal image with a Sobel operator (56) that used 5 × 5 kernels (Fig.
S2C). We then calculated the average gradient magnitude 0 ≤
m ≤ 1 over all pixels on the curves L(δ) and R(δ). A head model is
more likely to fit an actual head if m is big. This heuristic works
even if the image background is dark, because the hairs between
the individual lenses of a bee’s compound eye reflect light, which
creates a dim halo in front of the dark background.
Third, the image region around a bee’s head typically contains

multiple light intensity transitions. In addition to the intensity
transition at the head, intensity transitions also surround, for
example, the feet or antennae of the bee. To discourage the head
model from being attracted to the gradients surrounding other
body parts, we also considered the image gradient direction. We
did so by drawing the curves L(δ) and R(δ) onto an otherwise
empty image and estimated the image gradient of that image as
before. Next, we calculated the absolute difference of this gra-
dient’s direction and the gradient direction of the original image
over all pixels on the curves L(δ) and R(δ). A head model is more
likely to fit an actual head if the mean 0 ≤ μ ≤ π of these dif-
ferences is small.
The overall match quality q of a head model to an image was

calculated as q = (h/G + m + μ/π)/3. Thus, a model fits the image
well if the area containing the eyes and vertex is dark, if the
image intensity changes strongly at the edge of the eyes, and if
the direction of change of the image intensity agrees with the
curves that model the eyes.
Refinement of the potential trophallaxis pair list. Head detection pro-
vides new information about the position and orientation of a bee’s
head. This information is more accurate than the estimates de-
rived from the position and orientation of her bCode. We used
this new information to refine the list of potential trophallaxis
partners (i, j), employing the same procedure that was used to
create this list. However, this time we used the head centers Pi̕ and
Pj̕ instead of the most anterior points Pi and Pj, a vector from point
B(0.5) to point F(0.5) (head orientation vector) instead of the
bCode orientation vector when calculating γ, and thresholds Dm̕in,
Dm̕ax, and Γm̕ax instead of Dmin, Dmax, and Γmax, respectively.
Touch detection. For each of the potential trophallaxis pairs that
passed the refinement procedure, we checked whether their heads
are connected by a dark, thin shape that resembles an antenna or
proboscis. To simplify this task, we removed details in the bright
areas of the image by setting all pixel intensities (an integer between
0 and 255) that were above the empirically determined threshold
of 140 to that threshold (Fig. 3B). We then applied Bernsen’s
thresholding method (57) with circular windows, a radius of five
pixels, and a contrast threshold of 30 to separate dark foreground
pixels from bright background pixels (parameters were empiri-
cally determined) (Fig. 3C). Next, noise was reduced by promoting
background pixels to foreground pixels if their von Neumann
neighborhood consisted exclusively of foreground pixels, apply-
ing a median filter with a radius of 0.5 pixels, and repeating the
background pixel promotion procedure.
To check whether two heads were connected by a thin shape,

we first calculated for each foreground pixel the local thickness
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(58), which corresponds to the diameter of the largest circle that
contains the foreground pixel but no background pixels (Fig. 3D).
The local thickness was used later to determine the thickness of
connections between the two heads.
Next, we limited our search for a thin connection to an area

between the heads of the potential interaction partners. This area
was defined as the intersection of two half-disks around the head
center points Pi̕ and Pj̕. The radius of each half-disk was set to the
maximum proboscis length Q reported in Waddington and
Herbst (59). The diameter segment of each half-disk was ori-
ented orthogonal to the head orientation vector. Foreground
pixels outside the search area were discarded.
The remaining foreground pixels were skeletonized to obtain a

thin representation of the image inside the search area (Fig. 3E).
The skeleton was then simplified by demoting foreground pixels
to background pixels if they had more than two foreground pixels
in their von Neumann neighborhood. Skeleton pixels on the
curves L(δ), B(δ), R(δ) of the head of one trophallaxis partner
were designated as source pixels while skeleton pixels on the
same curves of the head of the other potential trophallaxis
partner were designated as target pixels. We then traversed the
skeleton to find a nonintersecting path between a source pixel
and a target pixel.
If a path was found, we checked its length, as well as the local

thickness profile of the pixels on the path, to determine whether it
could represent a proboscis or antenna. Paths needed to be
shorter than the maximum proboscis length Q. The expected
thickness profile allowed an arbitrary thickness for the first and
last R pixels of a path. This accommodates a limitation of the
head model, which does not fit the clypeus (part of the “face”) or
mandibles and labrum (mouthparts) well, if a bee tilts her head
all of the way back. The middle section of the path was required
to have a maximum thickness of S pixels. If a path fulfilled these
criteria, we recorded a trophallaxis contact (Fig. 3F). If the path
did not fulfill the criteria, we continued to traverse the image
skeleton until a path either did fulfill them, or all possible paths
had been examined.
Postprocessing. Trophallaxis contacts between the same two bees
that were detected in successive images (i.e., 1 s apart) were
combined into one trophallaxis interaction. Prior observations in
beehives indicate that trophallaxis can range in duration from as
little as 1 s to more than 2 1/2 min (60–62), but trophallaxis shorter
than 3 s may not always result in the transfer of liquid food (60).
We therefore discarded all trophallaxis interactions that were
observed for less than 3 s to focus on the subset of detections
where fluid was likely exchanged. Next, interactions were merged
if it was likely that they were part of the same trophallaxis event.
Interactions were merged if they involved the same two bees, were
separated by less than 60 s, and if at each point in time between
the two interactions to be merged at least one of the bees was
invisible or both bees passed the first step of the trophallaxis de-
tector (i.e., they are close and face each other). The latter con-
ditions prevent interactions from being joined if there is evidence
that the bees did not interact. It is possible that merging interac-
tions in this way joins separate interactions. However, since it is
unlikely that the same bees interact repeatedly within a short
period of time, this is a suitable approach for dealing with short
trophallaxis detection gaps. Merged interactions lasting longer
than 3 min were discarded, because such long trophallaxis inter-
actions are rare and their detection likely results from situations
where, for example, bees are crowded in or sleep next to each
other with antennae or legs crossed.
Parameterization.The procedure for geometrically identifying pairs of
bees that might be engaged in trophallaxis has four parameters: the
distance of the point P from the bCode center, and three thresholds
for determining whether bees are close and face each other. We
estimated the distance of P from the bCode center by manually
measuring the distance between the bCode center and the point

halfway between the bases of the antennae for multiple randomly
selected bees from all trials. We then calculated the mean of these
measurements and rounded it to the nearest pixel. The three
remaining parameters were determined together with the param-
eters for refining the list of potential trophallaxis partners.
Head detection has one free parameter, the expected pixel

intensity G. To estimate G, we manually sampled the pixel in-
tensity (an integer between 0 and 255) of a random head pixel in
multiple images from all trials, calculated the average intensity,
and rounded it to the nearest integer.
The remaining parameters for creating the initial list of po-

tential trophallaxis partners, as well as the parameters for refining
this list after head detection, were determined through an opti-
mization procedure that operated on a trophallaxis image library
L1. To create this library, we randomly sampled from trial
3 images of pairs of bees from the set of all bees that are close
enough to engage in trophallaxis, that is, di,j < Q. A single person
then manually annotated each image as to whether the two focal
bees performed trophallaxis. In total, the library L1 contains
39,863 images. In 1,045 of these images, the focal bees engaged
in trophallaxis.
To fix the parameters involved in creating and refining the list

of potential trophallaxis partners, we first defined a truncated
trophallaxis detector that operated on this list, but did not check
whether the heads of potential interaction partners are actu-
ally connected by a dark, thin shape. We applied this trun-
cated detector to the trophallaxis image library and estimated its
quality as the product of its sensitivity and its positive predic-
tive value. This process was repeated for different parameter
combinations <Dmin, Dmax, Γmax, Dm̕in, Dm̕ax, Γm̕ax>, which we
sampled uniformly from the extreme regions of the parameter
space {di,j: (i, j) ∈ L1} × {di,j: (i, j) ∈ L1} × {γi,j: (i, j) ∈ L1} ×
{di,j: (i, j) ∈ L1} × {di,j: (i, j) ∈ L1} × {γi,j: (i, j) ∈ L1}. The
parameter combination that resulted in the highest quality score
was used for the full trophallaxis detector that also includes
touch detection.
Touch detection has two parameters, the maximum terminal

thick segment length R and the maximum path thickness S. To
estimate R, we manually measured the shortest distance from the
border of a food recipient’s head model to the tip of her man-
dibles. We repeated this procedure for multiple randomly se-
lected recipients, calculated the mean, and rounded it to the
nearest pixel. The parameter S was set to the maximum pro-
boscis width measured in a random sample of recipients. In both
cases, images of food recipients were obtained from the troph-
allaxis library L1.
Performance. To evaluate the performance of the trophallaxis
detector, we created a second image library L2. This library was
made by extracting images of all pairs of bees that are in the
proper position for trophallaxis (i.e., di,j < Q and γi + γj ≤ ΓL2) in
100 randomly chosen triples of successive whole-hive images.
The additional condition γi + γj ≤ ΓL2 was introduced to reduce
the number of pairs that needed to be annotated, and its pa-
rameter ΓL2 was set to capture 95% of the trophallaxis events in
L1. Using triples of successive images enabled us to include in
our performance estimates the effect of postprocessing, which
aggregates trophallaxis detections over 3 s. To reduce the effect
of potential biases, images for L2 were annotated by a different
person than the images for L1. In addition, L2 images were
sampled from a different trial (trial 2) than images for L1.
Evaluating our detector on L2 demonstrates that it has a very

high specificity and negative predictive value (Table S3). This
result shows that most instances of bees not engaged in troph-
allaxis are correctly identified as such and that the detector
generates only a very small number of false-negative predictions.
The sensitivity indicates that our detector correctly identifies
∼50% of the trophallaxis interactions (Table S3). Out of all
trophallaxis detections, only 19% are false positives (Table S3).
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Note that these estimates are conservative for trophallaxis in-
teractions that are longer than 3 s, because these interactions
consist of multiple 3-s-long segments.
The current state of the art for automatically detecting a head-to-

head interaction between insects is to use information about their
relative position and orientation. However, it is well known that
spatiotemporal information alone may not be sufficient to dis-
tinguish a true social interaction from a colocalization in space and
time (63, 64). We demonstrated that this is also the case for
honeybee trophallaxis, using a truncated detector that only employs
spatiotemporal information. Essentially, this truncated detector
corresponds to the first stage of the full trophallaxis detector that
identifies potential trophallaxis partners. As expected, the trun-
cated detector did not predict trophallaxis reliably, mostly because
it had a very low positive predictive value (Table S3). Our approach
for detecting trophallaxis thus represents a substantial improve-
ment over the current state of the art.

SI Text
Effect of Short Waiting Times on Spreading Dynamics. Deterministic
SI spreading progresses along temporal paths that connect an
infected node to an uninfected node and take the least time to
traverse. This suggests that temporal correlations on adjacent
edges, that is, short waiting times, could explain fast spreading.
Since the probability of short waiting times is much higher in a
trophallaxis network than in its temporally randomized coun-
terparts (Fig. 4A and Fig. S4A), we hypothesized that spreading
dynamics in the trophallaxis networks are driven by interactions
that result in short waiting times.
To test this hypothesis, we removed all interactions from the

trophallaxis networks of trial 1 that resulted in waiting times shorter
thanW = 168 s and repeated our spreading simulations. The value
of the waiting time thresholdW was set to the center of the last bin
of the waiting time distribution P(τ) that had a higher probability
in the empirical network than in the temporally randomized ref-
erence networks. To compensate for the longer average waiting
time due to the removal of interactions, we required that the time
tk̂ was greater than 10 min when calculating the prevalence p ̽ at the
end of the accelerated spreading period.
We find that, despite the in silico removal of 55% of the in-

teractions, spreading continues to be accelerated in the empirical
networks. The speedup of spreading was s = 14.2% and p ̽ =
95.2% of the bees were infected at the end of the period of
accelerated spreading. This indicates that, while interactions
resulting in short waiting times contribute to fast spreading, they
are not the sole driver.

Effect of Mean Waiting Time on Spreading Dynamics. If a temporal
network violates the ongoing link picture (65), applying the
original RP null model (5) may result in a temporally randomized
network with a higher mean waiting time than the original net-
work. In principle, this increase could slow down simulated
spreading on a temporally randomized network. Our modified
version of the RP null model mitigates this issue by assigning
individuals to interactions that occurred before their time of
death. However, applying the modified RP null model may still
result in an artificial increase of the mean waiting time if a
randomized interaction involving individual i occurs before
(after) the first (last) interaction of that individual.
For our datasets, the average difference of themeanwaiting time

in the temporally randomized reference networks and that same
quantity in the trophallaxis network is 9.07 ± 4.27 s (n = 5). While
this difference is small, it does, on average, apply to each waiting
time of all individuals and could explain why, especially during the
early spreading phase, the randomized network is slower.
To quantify how much the waiting time differences affect our

results, we repeated our spreading simulations, using a version of
the RP null model that preserves the mean waiting time for each

bee. This was achieved by fixing the time _ti (t
_
i) of the first (last)

interaction of each individual i. In addition, interaction times θi,j
and θi ̕,j ̕ of pairs of individuals (i, j) and (i,̕ j ̕ ) were only permuted
if the condition _ti ̕ ≤ θi,j ≤ t

_
i ̕ ∧ _tj ̕ ≤ θi,j ≤ t

_
j ̕ ∧ _ti ≤ θi,̕j ̕ ≤ t

_
i ∧ _tj ≤ θi,̕j ̕ ≤ t

_
j

was satisfied.
We find that neither the speedup s and nor the grand mean

prevalence at the end of the accelerated spreading period p ̽ changes
much if the mean waiting time is preserved during temporal ran-
domization (Table S2). This result excludes the possibility that
accelerated spreading is due to a lower mean waiting time in the
temporally randomized networks.

Effect of False Positives and False Negatives in Trophallaxis Detection.
To understand how the false-negative rate of the trophallaxis
detector affects our conclusions about spreading on the trophallaxis
network, we subsampled the interactions of trial 4 to create thinned
versions of the original trophallaxis network, and repeated some of
our analyses on these thinned networks.
Trophallaxis interactions were subsampled at sampling rates ρ

∈ {0.2, 0.4, 0.6, 0.8}. In each case, a fraction ρ of the original
interactions was retained, which lowered the average interaction
rate from λ in the original trophallaxis network to λρ = ρλ in the
subsampled networks. We then repeated the SI spreading sim-
ulations on each subsampled network and on the two ensembles
of randomized reference networks. In contrast to our original
simulations, spreading was simulated for 20 h rather than 10 h,
because we expected spreading dynamics on the subsampled
networks to be slower than on the original trophallaxis network
due to the lower average interaction rate λρ.
Fig. S6 shows that, even in the subsampled networks, simulated

spreading is enhanced relative to temporally randomized net-
works and relative to temporally and topologically randomized
networks. As anticipated, spreading dynamics in the subsampled
networks are slower than in the original network. In particular,
the time t20% varies inversely with the sampling rate over all
values ρ (Fig. S7A). Thus, the average interaction rate λρ is the
only quantity that sets the observed timescale for spreading on
the networks.
If the mean prevalence is plotted as a function of dimensionless

time λρt, which normalizes for the effect of the sampling rate ρ
on spreading speed, then the prevalence curves for the empirical
networks subsampled at sampling rates ρ ≥ 0.6 collapse on top of
each other (Fig. S7B). This observation suggests that we would
obtain qualitatively similar results if the sensitivity of the trophal-
laxis predictor were lower than it actually is. For sampling rates ρ ≤
0.4, the prevalence curves of the subsampled empirical networks
are more similar to the curves of the randomized reference net-
works (Fig. S7B) and the speedup of spreading s decreases (Fig.
S7C), likely because at these low subsampling rates the network
structures responsible for accelerated spreading are destroyed.
Taken together, these results suggest that the results of our

spreading simulations are robust to the false-negative rate of
trophallaxis detection. Furthermore, it appears that the enhance-
ment of spreading can be captured at false-negative rates that are
even higher than those of the trophallaxis predictor.
False positives are spurious trophallaxis detections that may be

generated when two bees are close and face each other (Fig. 2) for
at least 3 s. The precise spatiotemporal pattern of spurious de-
tections is unknown. However, as a first approximation, we can
assume that they are generated at random times between indi-
viduals that fulfill the aforementioned criteria. Such random
events can be expected to make an observed networkmore similar
to its randomized counterpart. Because neither burstiness nor
accelerated spreading manifests in the randomized reference
networks, we expect that our quantitative estimate of these two
network features represents a lower bound.
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Interactions with the Queen.As the single female reproductive bee
in a colony, the queen receives special attention from her many
more or less sterile daughters. In addition to feeding her, worker
bees frequently form a circle around the queen, examine her
intensely with their antennae and forelegs, and lick her with their
tongues (17). Our trophallaxis detector cannot distinguish these
behaviors, which occur only briefly and relatively infrequently
among worker bees, from trophallaxis and therefore generates
many false-positive detections that involve the queen, resulting in
a positive predictive value of only 0.11. We therefore excluded
interactions with her from our analyses. However, to test whether
our results change if these interactions are included, we repeated
our analyses on networks that include all predicted interactions
with the queen.
We find that our main results do not depend strongly on the

presence of interactions with the queen. Trophallaxis continues
to be bursty (B = 0.33 ± 0.04, n = 5), and spreading dynamics
are faster in the bee networks than in temporally randomized

reference networks until most bees (p ̽ = 80.6 ± 6.5%, n = 5) are
infected. The speedup of spreading s is 49.5 ± 14.2% (n = 5), and
the difference between the trophallaxis network and its tempo-
rally randomized counterparts is statistically significant (condi-
tional uniform graph test, n = 100, P < 0.01 for all trials).
Like in networks without the queen, network topology has a small

but statistically significant effect on spreading dynamics (Mann–
Whitney U test, U ≥ 89, n = 100, P < 0.04 for all trials). However,
in three trials, randomizing network topology leads to a slowdown
(−1.3 ± 0.5%), and in two trials it leads to a speedup (0.4 ± 0.3%).
This inconsistency is likely rooted in the fact that the majority of
trophallaxis detections with the queen are false positives.
Finally, accelerated spreading continues to be resilient to a

strong demographic perturbation. Simulated spreading through
the empirical postremoval networks is faster than through tem-
porally and topologically randomized reference networks (con-
ditional uniform graph test, n = 100, P < 0.01 for all trials).
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Fig. S1. Matrix barcode (bCode) for automatically identifying insects. (A) A barcoded honeybee. The bCode on this bee encodes ID 1405. (B) Schema of a
bCode. Gray squares are the bCode template. Background squares are shown in light gray. The finder pattern and the two alignment patterns are shown in
dark gray. Blue squares encode the identifier, and green squares encode parity symbols. Identifier and parity symbols are encoded as binary numbers, and
squares labeled with bigger numbers represent higher-order bits of the identifier and the parity symbols. If a labeled square is black in an actual bCode, it
represents a 1; if it is white, it represents a 0.

A B C

F(δ) B(δ)

R(δ)

L(δ)
Fig. S2. Honeybee head detection. (A) Schema of the model used by the particle swarm optimizer to detect bee heads in a digital image. The model is
composed of four quadratic Bézier curves, L(δ), R(δ), F(δ), and B(δ), that delineate the left eye, right eye, front of the head, and back of the head, respectively.
The end points of these curves and the center of the head model are shown as black disks. F(δ) and the two dashed lines circumscribe the area expected to show
the most differences between bees due to variation in hair color. (B) Result of applying the head detector to the image region estimated to contain the head of
the center bee. (C) Image gradient of the image shown in B. The intensity and color of a pixel correspond to the strength and angle of the image gradient,
respectively. The fitted head model is outlined in white.
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Fig. S3. Semitransparent view of the observation hive with honeycomb and attached backlight. Parts occurring multiple times were labeled only once for
visual clarity. The observation hive consisted of a wooden frame (a), stabilized by two feet (b). The frame held a single plastic honeycomb (c). The honeycomb
was covered by a glass window (d, partially slid to the right) that was supported by two rails (e). Holes (f) at the top and bottom of the hive frame provided
ventilation. A short ramp (g) allowed bees to access the entrance tunnel (h) that opened out into a plastic connector with two ramps (i). An infrared LED
backlight (j) increased the contrast between the plastic comb and bees.
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Fig. S4. Simulated spreading in honeybee trophallaxis networks is faster than in randomized reference networks, despite bursty interaction patterns. Rows
correspond to trials 2–5. (A) Distribution of log-binned waiting times between interactions for the empirical network (black circles) and 100 temporally
randomized reference networks (magenta crosses). Dashed line: power law fit to the empirical waiting times (see Table 1 for exponents of the fit). Lanes
labeled s, m, h, and d denote seconds, minutes, hours, and days, respectively. (B) Mean fraction of bees infected via deterministic SI spreading (mean prev-
alence, controlled for mortality), averaged over 1,000 simulation runs, as a function of spreading time. Solid black line: empirical trophallaxis network; ma-
genta dashed lines: 100 temporally randomized reference networks; green lines: 100 temporally and topologically randomized reference networks; dotted
black line: time when the mean prevalence reaches 20% in the empirical network. (Inset) Mean prevalence as a function of spreading time until almost all bees
have been infected. (C) Histogram of the mean time required to reach 20% prevalence (t20%) for the 100 temporally randomized reference networks (ma-
genta) and the 100 temporally and topologically randomized reference networks (green). Arrow indicates when the prevalence reaches 20% in the empirical
network.
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Fig. S5. Speedup of spreading sp̄ as a function of the mean prevalence p̄, measured in the empirical network. The dashed black line highlights the speedup s = 0.

A B

C D

Fig. S6. Mean prevalence for subsampled empirical networks (black solid line), 100 temporally randomized networks (magenta dashed line), and 100 tem-
porally and topologically randomized networks (green solid line). Simulated spreading dynamics in the randomized networks are similar enough that the
prevalence curves for these networks appear to fall on top of each other. (A) Sampling rate ρ = 0.8. (B) ρ = 0.6. (C) ρ = 0.4. (D) ρ = 0.2.
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Fig. S7. Comparison of spreading dynamics in the original trophallaxis network and networks subsampled at sampling rates ρ. (A) Variation of the reciprocal
time 1/t20% with the rate of subsampling ρ, for the empirical networks (black circles), the temporally randomized networks (magenta crosses), and the
temporally and topologically randomized networks (green crosses). The dashed lines are to guide the eye. (B) Mean prevalence in empirical (solid) and
temporally randomized (dashed) networks, at sampling rates ρ = 1 (black), ρ = 0.8 (red), ρ = 0.6 (yellow), ρ = 0.4 (blue), and ρ = 0.2 (turquoise) as a function of
dimensionless time, namely, the spreading time t multiplied by the interaction rate λρ for that subsampled network. The prevalence curves for the randomized
networks approximately collapse on top of one another. The curves for empirical networks at sampling rates ρ ≥ 0.6 fall on top of each other, while the curves
for empirical networks at increasingly lower sampling rates become more similar to randomized networks. (C) The speedup of spreading s for different
sampling rates ρ.

Table S1. Overview of trials

Trial Begin date End date EO

Forager removal Temperature, °C
LED lights
always onDay Begin time End time CS BR, % Hive Room

1 07/03 07/13 3 8 08:25 20:00 948 29 34.4 ± 0.2 31.7 ± 0.2 Yes
2 07/16 07/23 2 7 10:05 19:50 991 46 35.1 ± 0.4 32.1 ± 0.7 Yes
3 08/06 08/14 2 7 08:31 20:00 973 35 34.5 ± 0.4 31.8 ± 0.2 Backlight
4 09/16 09/25 2 7 12:01 18:18 995 13 33.5 ± 0.7 32.6 ± 0.6 No
5 09/30 10/09 2 9 11:56 18:39 892 21 33.5 ± 0.6 32.8 ± 0.5 No

BR, percent bees removed during the forager removal; CS, colony size at the time when the forager removal began; EO, number of
days after which the hive entrance was opened.

Table S2. Preserving the mean waiting time in temporally
randomized trophallaxis networks has a negligible effect on
simulated spreading dynamics

Trial (s − s)̂/s (p̽ − p̂)/p̽

1 0.014 0.002
2 0.028 0.001
3 0.012 0.012
4 0.010 0.006
5 0.004 0.005

The normalized difference of the speedup of spreading with (s)̂ and with-
out (s) preserving the mean waiting time and the normalized difference
of the grand mean prevalence at the end of the period of accelerated
spreading with (p̂) and without (p̽) preserving the mean waiting time are
shown for each trial.
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Table S3. Trophallaxis detection performance for the full
detector with computer vision and the truncated detector
without computer vision

Performance measure Full detector Truncated detector

Sensitivity 0.53 0.73
Specificity 0.98 0.71
Positive predictive value 0.81 0.28
Negative predictive value 0.93 0.94

Detection performance was evaluated after integrating detections over
three successive images.

Other Supporting Information Files

Dataset S1 (TXT)
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