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via frequent information exchanges that are in part mediated by
social interactions (17). One of these interactions is “trophallaxis,”
during which two bees touch each other with their antennae while
orally transferring liquid food (18). In honeybees and other social
insects, all colony members engage in trophallaxis extensively (19–
22) and it takes place more often than expected if its sole purpose
is feeding (19). Trophallaxis has been implicated in disease trans-
mission (23–25) and communication (17, 26), and recent findings
report the occurrence of several types of communication-related
molecules in trophallaxis fluid (27). Honeybee trophallaxis is thus
an excellent system for exploring the relationship of burstiness and
spreading in a nonhuman animal society, permitting a cross-species
comparison with human communication networks. This com-
parison enables us to explore whether highly social animals
have similar interaction patterns and whether their networks
function in a similar way.
We developed a method to automatically monitor trophallaxis

with high spatiotemporal resolution over extended periods of time
(Figs. 1–3 and SI Materials and Methods). Similar to other high-
throughput approaches for tracking insects (15, 28–30), we based
our method on a custom matrix barcode, called “bCode” (Fig. S1).
Attached to the thorax, bCodes enabled reliable identification and
tracking of every individual in a colony from sequences of digital
images (SI Materials and Methods). To detect trophallaxis, our
software first uses information about each bee’s position and ori-
entation to identify pairs of bees that were in the proper position
(Fig. 2). Custom computer vision algorithms then determine for
each pair the exact position, shape, and orientation of the bees’
heads (Fig. S2) and verify trophallaxis by confirming that the heads
are connected by a shape that resembles a proboscis (tongue) or
antenna (Fig. 3).
We monitored five honeybee colonies for 8–11 d each (Table

S1). To standardize the colonies, they were each established with
1,200 1-d-old adult worker bees and a queen. Such colonies have
been shown to develop the basic elements of colony social orga-
nization despite an atypical age demography (31). Bees were
housed in a single-sided, glass-walled observation hive designed
to prevent them from obscuring each other’s barcodes (Fig. S3).
The observation hive was kept in a dark, temperature-controlled
room (Fig. 1A) and connected to the outside for normal foraging.
Barcoded bees were imaged once per second by a computer-
controlled high-resolution camera under infrared light invisible
to the bees (32).

Results and Discussion
Trophallaxis interactions were analyzed as temporal networks (5),
with nodes representing individuals, and time-stamped edges con-
necting nodes if the corresponding individuals interacted at least
once. These networks revealed that honeybee interactions are
bursty, as seen in the distribution of waiting times τ between suc-
cessive interactions of individual bees (Fig. 4A and Fig. S4A). This
distribution can be represented by a power law fit P(τ) ∼ τ-α (Fig.
4A, Table 1, and Fig. S4A), although other functional forms are
also possible. Most importantly, this distribution is not consistent
with an exponential or other short-tailed distribution expected from
a memoryless process, suggesting the presence of non-Markovian,
long-ranged temporal correlations whose origin is presently un-
clear. By contrast, the waiting times in ensembles of 100 temporally
randomized networks, in which the times of the original interac-
tions were randomly permuted, were approximately exponentially
distributed (Fig. 4A and Fig. S4A). The coefficient of burstiness for
honeybee networks (Table 1) was similar to that observed for
human telephone and email communication (33), demonstrating a
striking parallel between the interaction patterns of both species.
Since bursty interactions have been associated with slow spreading

dynamics in human communication networks, we expected that
spreading in the bee networks is also inhibited. To test this hypoth-
esis, we simulated spreading in each empirical trophallaxis network

and in the ensembles of temporally randomized networks, using the
deterministic SI model (34) (see Materials and Methods for details).
This model is commonly used to explore how well the temporal
pattern of human social contacts supports spreading processes
through a network (reviewed in refs. 5 and 7), enabling us to readily
compare results across species.
In contrast to human communication networks, spreading was

faster in the bee networks than in the temporally randomized ref-
erence networks (Fig. 4B and Fig. S4B). The difference in preva-
lence varied over time (Fig. S5), with accelerated spreading seen
until most individuals (p ̽ = 78.2 ± 7.3%, mean ± SD, n = 5) were
“infected” (Fig. 4B, Table 1, and Fig. S4B). Following ref. 8, we
used the time at which 20% of the bees were “infected” to quantify
spreading speedup. Spreading was almost 50% faster than in the
corresponding ensemble of randomized reference networks (s =
46.7 ± 13.7%, n = 5; conditional uniform graph test, n = 100, P <
0.01 for all trials) (Fig. 4C, Table 1, and Fig. S4C).
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Fig. 1. Assay for automatically monitoring social interactions (trophallaxis)
in honeybee colonies. (A) Experimental setup. Bees were housed in a glass-
walled observation hive (a) that contained a one-sided honeycomb and
was connected to a hole in the wall allowing unlimited access to the out-
doors for foraging. The hive was illuminated with eight infrared LED lights
mounted on an aluminum frame (b). To facilitate automatic image analysis,
the honeycomb was backlit with an array of infrared lights mounted behind
the hive (c, hidden). Images were recorded with a high-resolution mono-
chrome camera (d) that controlled the infrared lights via a breakout board
(e). A standard personal computer (f) controlled the camera and stored
images. Some cables are omitted for visual clarity. (B) Typical image obtained
from this system, showing barcoded bees inside the observation hive. Out-
lines reflect whether a barcode could be decoded successfully (green), could
not be decoded (red), or was not detected (no outline). The hive entrance is
in the lower-right corner. (Inset) Close-up of two bees that were automati-
cally detected performing trophallaxis.
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Because even weak temporal randomization procedures, such
as the one employed in this study, destroy burstiness as well as
other temporal structures, we cannot determine which of these
structures is responsible for accelerated spreading. However, we
confirmed that accelerated spreading was not simply due to an
increase in the mean waiting time in the randomized reference
networks (Table S2 and SI Text). In fact, spreading was faster than
expected even when interactions resulting in short waiting times
were removed in silico from the trophallaxis networks (SI Text).
These results suggested that a mechanism other than an excess of
short waiting times (Fig. 4A and Fig. S4A), possibly temporal
correlations or network topology, underlies accelerated spreading.
We investigated whether network topology has an effect on

spreading by simulating spreading on a second null model where,
in addition to randomly permuting the interaction times, the
edges of each trophallaxis network were randomly rewired. This
additional randomization led to a statistically significant slow-
down relative to the temporally randomized reference networks
(Mann–Whitney U test, U ≥ 15.5, n = 100, P < 4.34·10−30 for all
trials) (Fig. 4C and Fig. S4C). However, the slowdown magni-
tude was small (s = −1.9 ± 0.0%, n = 5), suggesting that even
though the topology of the time-aggregated network plays a
partial role in the enhancement of spreading, the predominant
driver is network temporal structure.
To test whether the speedup of spreading is resilient to pertur-

bation, we collected returning foraging bees as they attempted to
reenter their hives on the seventh day of the experiment; 13–46% of
each colony was depopulated (Table S1). In all five trials, spreading
continued to be faster in bee networks constructed from the in-
teractions that took place on the day after the forager removal
relative to the temporally and topologically randomized reference
networks (conditional uniform graph test, n = 100, P < 0.01 for all
trials). This demonstrates that accelerated spreading is robust to a
strong perturbation and manifests even on the timescale of a single
day. We speculate that the observed resiliency is in part rooted in
individual anonymity in the hive; social insect workers living in large
colonies apparently do not recognize each other as individuals (35).
This means that bees interact opportunistically, which likely con-
tributes to the resiliency of the trophallaxis network.

Conclusions
We have discovered a strong similarity (burstiness) between the
temporal structure of communication networks of honeybees and
humans. A similarity in species separated by over 600 million years
of evolution likely reflects a fundamental property of social in-
teractions. However, despite this commonality, the networks of
the two species appear to operate differently in terms of spreading

dynamics. This striking difference provides a fresh perspective on
a commonly held assumption about the interplay of temporal
structures and spreading in real-world communication networks,
which should inform future models of large-scale social organi-
zation, information transmission, and disease spread.
Although in our simulations most bees were “infected” quickly,

spreading dynamics exhibited an interesting dichotomy. On short
timescales, spreading was faster than expected while on longer

Fig. 2. Illustration of the geometric procedure for detecting potential
trophallaxis partners. Dashed squares Ci and Cj are the bCodes of bee i and j,
respectively. Each arrow represents the bCode orientation vector that cor-
responds to the direction a bee is facing. Points Pi and Pj are the most an-
terior point on the anteroposterior axis of the two bees, and di,j is the
distance between these points. If di,j is within a given range and the sum of
the angles γi and γj is smaller than a given threshold (i.e., bees i and j are
close to and face each other), then we consider bees i and j potential
trophallaxis partners.

Fig. 3. Automated confirmation of trophallaxis behavior (see SI Materials and
Methods for details). (A) Image of two bees geometrically predicted to be
engaged in trophallaxis (Center). (B) Simplified version of the image in A, in
which pixel intensities above a threshold value have been set to the threshold
value. Note that this procedure removes most of the honeycomb structure and
the reflections on the comb contents. Bright colors delineate the area formed
by two intersecting half-disks that will be searched for a trophallaxis contact
(search area). (C) Result of thresholding the image in B. White areas are con-
sidered to be the image background. Black and gray represent the image
foreground. Black delineates the trophallaxis search area. (D) Local thickness
(45) of the foreground areas in C. Locally thin pixels are drawnwith cold colors.
These pixels mark image areas that show thin structures like a bee’s proboscis
or her antennae. Locally thicker pixels are drawn with increasingly warmer
colors. Rich colors highlight the trophallaxis search area. (E) Skeleton of the
image in C. The skeleton defines paths that can be traversed to test whether
there is a thin structure (green) connecting the front or sides of the fitted head
models (magenta). The skeleton underneath the head models was removed to
eliminate paths passing through the heads. Rich colors highlight the trophal-
laxis search area. (F) Front and sides of the fitted head model (magenta) of the
two potential trophallaxis partners and a path through a locally thin search
area (green) drawn onto the image in A. The path traverses the proboscis
(tongue) of the receiving bee.
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timescales it was inhibited. Such spreading dynamics were also
observed in Temnothorax rugatulus ants (36) but with a different
reference model. Although the ant spreading dynamics were
classified as slow, the early-time behavior appears qualitatively
similar to our results (see figure 2 in ref. 36). It is therefore
tempting to speculate that dichotomous spreading dynamics may
be characteristic of highly social insects.
At first blush, one might hypothesize that the spreading di-

chotomy observed here could be the result of the bee’s inability
to structure social interactions so as to reach everyone quickly,
or a reflection of their ability to respond differently at different
timescales, for example in the context of foraging. In the latter
viewpoint, the trophallaxis network could play a role in medi-
ating different response times by communicating changes in food
resource availability quickly to foragers, but more slowly to hive
bees. However, we caution against interpreting our results in this
way, because the apparent inhibition at long timescales naturally
follows from the fact that the waiting time probability density is
fat-tailed, so that the approach to saturation is generally slower
than for a purely memoryless process (13, 14). Thus, the di-
chotomous spreading dynamics might be an epiphenomenon of
the heavy-tailed waiting time distribution discovered here and
remains to be understood more fully in future theoretical work.
A social network that supports spreading well can be expected

to benefit communication and coordination, but also the trans-
mission of disease. Accelerated spreading is therefore seemingly
at odds with some ideas of organizational immunity, which pre-
dict that interactions among members of insect societies should
be structured to slow down disease transmission (37). Perhaps
honeybee colonies self-organize to achieve a trade-off—fast infor-
mation spreading and reduced disease transmission—by dynamically
adapting interaction patterns to the health status of individual
bees. The techniques we reported here will allow researchers to
study this and other topics related to the mechanisms and ecology
of communication networks in nonhuman societies.

Materials and Methods
Experiments. Colonies were established with 1,200 barcoded, 1-d-old worker
bees and one unrelated, naturally mated queen that was also barcoded. Each
colony was provided with the same amount of honey and artificial “bee

bread.” We provided sufficient honey to feed the entire colony for the du-
ration of the experiment and enough bee bread for 2 d. After sundown on the
second or third day of the experiment, we opened the hive entrance to allow
workers to begin foraging. Five days later, we removed as many foragers as
possible from the colony. We performed five separate trials of this experiment
in summer and autumn of 2013. Further details are described in SI Text.

Networks. We constructed one temporal network from the trophallaxis de-
tections in each trial. Each node in such a temporal network corresponds to one
bee. Pairs of distinct nodes (i, j) were connected with an undirected edge if the
corresponding individuals interacted at least once during the observation
period. We assigned a list of elapsed times θi,j, counting from the beginning of
the experiment and with a resolution of 1 s, to each edge to specify when each
trophallaxis contact was initiated. These times enabled our spreading simula-
tions to maintain the precise time order of interactions.

Bees that did not interact were not included in the networks. This led to
the omission of at most one individual per trial. In the networks used in the
primary analysis, the queen was always excluded, because social interactions
with the queen are different from worker–worker interactions (17) in ways
that resulted in a high number of false-positive trophallaxis detections
(SI Text). However, to explore the sensitivity of our results to the exclusion of
the queen, we also performed a subset of our analyses on networks in which
interactions with the queen were retained (SI Text).

Burstiness. Bursty event sequences follownon-Poissonian statistics, characterized
by bouts of rapidly occurring events that are separated by potentially long
periods of inactivity. Toquantify theburstiness of trophallaxis,we considered the

A B C

Fig. 4. Simulated spreading in honeybee trophallaxis networks is faster than in randomized reference networks, despite bursty interaction patterns. Panels show
data from trial 1; see Fig. S4 for trials 2–5, which yielded similar results. (A) Distribution of log-binned waiting times between interactions for the empirical
network of trial 1 (black circles) and 100 temporally randomized reference networks (magenta crosses). Dashed line: power law fit to the empirical waiting times
(see Table 1 for exponents of the fit). The dotted line highlights the threshold W = 168 s that distinguishes short waiting times from long waiting times. Lanes
labeled s, m, h, and d denote seconds, minutes, hours, and days, respectively. (B) Mean fraction of bees “infected” via deterministic SI spreading (mean prevalence,
controlled for mortality), averaged over 1,000 simulation runs, as a function of spreading time. Solid black line: empirical trophallaxis network; magenta dashed
lines: 100 temporally randomized reference networks; green lines: 100 temporally and topologically randomized reference networks; dotted black line: time when
the mean prevalence reaches 20% in the empirical network. (Inset) Mean prevalence as a function of spreading time until almost all bees have been “infected.”
(C) Histogram of the mean time required to reach 20% prevalence (t20%) for the 100 temporally randomized reference networks (magenta) and the 100 tem-
porally and topologically randomized reference networks (green). Arrow indicates when the prevalence reaches 20% in the empirical network.

Table 1. Honeybee trophallaxis network features

Trial V E I T, d B α s c p̽

1 1,164 200,723 302,221 11 0.33 1.18 0.53 3.99 0.82
2 1,140 143,571 205,787 8 0.32 1.18 0.44 3.21 0.73
3 1,138 129,653 191,795 9 0.27 1.18 0.24 1.92 0.68
4 1,174 174,317 259,923 10 0.34 1.18 0.57 4.21 0.83
5 1,170 212,685 329,170 10 0.39 1.19 0.56 4.06 0.85

For each trial we show: the number of nodes (V), edges (E), and interac-
tions (I); sampling time in days (T); burstiness coefficient of trophallaxis (B);
exponent of the power law fit to the waiting time distribution (α); speedup
of spreading in terms of time (s) and mean prevalence (c); and grand mean
prevalence at the end of the period of accelerated spreading (p̽).
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time intervals τ during which a bee was not involved in any interaction (waiting
times). These waiting times were aggregated across individuals and the burst-
iness coefficient B (33) was calculated. This quantity is 0 if trophallaxis is Pois-
sonian and tends to 1 (−1) as trophallaxis becomes increasingly bursty (periodic).

To obtain an estimate of the waiting time distribution P(τ), waiting times
were pooled across bees and binned logarithmically into 24 bins. Bin lengths
were chosen so that they were uniform in log space for τ > 10 s; since waiting
times could be resolved with 1-s precision, smaller waiting times had to be
dealt with separately, and were binned into two logarithmically spaced bins
for 1 s < τ < 10 s. Maximum-likelihood estimates of the power law exponents
were obtained using the “powerlaw” Python package (38) with the fit pa-
rameter xmin set to 1 s.

Spreading Dynamics. We used the deterministic SI model (34) to simulate
spreading dynamics of information or disease on various temporal networks.
In this model, individuals are in one of two states, “susceptible” or “in-
fected,” and an infected individual “infects” a susceptible individual with a
certain probability when they come in contact. Since we did not study the
spread of a specific piece of information or pathogen, we set the infection
probability to 1 to obtain an empirical estimate of the upper bound for the
speed of spreading via trophallaxis. We furthermore assume that an in-
fection can spread bidirectionally because (i) we studied the pattern of
behavioral interactions, and not unidirectional fluid flow, and (ii) the
transmission of information (26) or disease (39) does not necessarily follow
the direction of fluid flow. Each simulation was initiated by setting all bees
to susceptible, choosing an interaction uniformly at random, and infecting
the two bees involved in that interaction. Spreading dynamics were then
simulated over a 10-h time window of the temporal network, and quantified
in terms of the fraction of infected bees alive p(t) = v(t)/V(t) (prevalence),
where v(t) is the number of infected bees at time t after the first infection,
and V(t) is the colony size at time t. Note that due to mortality, v(t) can
either increase or decrease, while V(t) decreases monotonically. To obtain a
more robust estimate of p(t), we repeated the SI simulation 1,000 times for
each temporal network, using different initial conditions, and calculated the
average prevalence p̄(t) after an elapsed time t.

To evaluate whether the temporal structure of the trophallaxis network
facilitates spreading, we compared the empirical network against an ensemble
of N = 100 randomized reference networks. This ensemble was created by
randomizing the original trophallaxis events with a modified version of the
randomly permuted times (RP) null model (5), which shuffles the times among
the original trophallaxis contacts. Our modification ensured that a bee was not
assigned to a trophallaxis contact occurring after her time of death. This is
necessary since otherwise the average waiting time for individuals dying be-
fore the end of a trial could increase, which would lead to an artificial slow-
down of spreading. Temporal randomization destroys burstiness and temporal
correlations but maintains all other features of the original network, in-
cluding the number of contacts per node and edge, colony-level circadian
rhythms, and the topology of the time-aggregated network.

To assess the effect of network temporal structure on spreading speed, we
used a conditional uniform graph test (40) to compare the time te when, for
the first time, an average fraction p̄e(te) = 0.2 of bees is infected in the em-
pirical network to the times t1≤k≤N when, for the first time, the same average
fraction p̄k(tk) = 0.2 of bees is infected in each of the temporally randomized
networks. To determine whether spreading speed in the empirical network is
statistically different from the ensemble of randomized reference networks at
the 0.05 significance level, we used the method by ref. 41. The relative
speedup of spreading s was calculated by averaging (tk − te)/te over the en-
semble of temporally randomized networks. To obtain the speedup of
spreading in terms of prevalence c, we averaged 0.2/p̄k(t

e) over the ensemble
of temporally randomized networks.

To further characterize the time period of accelerated spreading through
the empirical network, we computed the prevalence at the end of that
period. Specifically, we calculated the mean prevalence in each temporally
randomized network at the times t1̂≤k≤N when the mean prevalence in the
randomized network was equal to the mean prevalence in the empirical
network, p̄k(tk̂) = p̄e(tk̂). We restricted tk̂ to spreading durations longer than
5 min to account for the fact that early spreading dynamics also depend
on the seed interaction with which the spreading simulation is initiated.
The prevalence p̽ at the end of the accelerated spreading period was

calculated by averaging p̄k(tk̂) over the ensemble of temporally randomized
networks.

We tested whether the topology of the time-aggregated trophallaxis net-
work affects spreading dynamics, using a second ensemble of N randomized
reference networks. This second ensemble was created by first randomly
rewiring the edges of the original network with the randomized edges null
model (5), and then performing the temporal randomization described above.
The resulting reference networks retain the connectedness, degree distribu-
tion, and circadian rhythms of the original network, but have an otherwise
randomized topology and temporal structure. To assess the significance of
network topology, we contrasted the times tk for the first ensemble with the
times tk for the second ensemble, using a Mann–Whitney U test. The relative
speedup of spreading s was defined as the difference between the average of
the times tk for the second ensemble and that for the first ensemble, nor-
malized by the average of the times for the first ensemble.

To explore the sensitivity of our results to the false-negative rate of the
trophallaxis predictor, we also performed a subset of the spreading analyses
on networks created from a random subsample of the interactions (SI Text).
This analysis showed that accelerated spreading can also be observed at a
higher false-negative rate than that of the trophallaxis predictor.

Robustness. To assess whether accelerated spreading is robust to a demo-
graphic perturbation, we simulated, for each trial, deterministic SI spreading on
a daily temporal network constructed from the interactions that took place on
the day after the forager removal. The sampling time for the daily temporal
network was bounded by sunrise on the day after the forager removal and
sunrise on the following day. Accelerated spreading was said to be robust if a
conditional uniform graph test of the empirical time te and the times tk of an
ensemble of topologically and temporally randomized reference networks
was statistically significant at the 0.05 level.

Software. Printable bCodes were made with custom software that builds
on the software library ZXing 1.47 (42), which we modified to work with
bCodes. Images of barcoded bees were acquired with StreamPix 5 (NorPix).
Images were resized and sharpened using ImageMagick, version 6.7.8–9
(ImageMagick Studio LLC). bCodes were detected with custom software that
builds on the modified version of ZXing mentioned above. Trophallaxis was
detected with custom software that builds on ImageJ 1.47 (43) and the
ImageJ plugins Auto Local Threshold 1.5 (44) and Local Thickness 3.1 (45).
Detected trophallaxis interactions were analyzed with scripts written in Py-
thon 2.7 and in R 3.2.0, using the packages sqldf 0.4.10 (46) and igraph 1.0.1
(47). Statistical analyses were performed in R.

Data and Code Availability. Temporal network datasets and custom computer
code for producing printable bCode images, detecting bCodes in digital images,
and detecting trophallaxis are publicly available at www.beemonitoring.igb.
illinois.edu.
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