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Framework for analyzing ecological trait-based models in multidimensional niche spaces
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We develop a theoretical framework for analyzing ecological models with a multidimensional niche space.
Our approach relies on the fact that ecological niches are described by sequences of symbols, which allows us to
include multiple phenotypic traits. Ecological drivers, such as competitive exclusion, are modeled by introducing
the Hamming distance between two sequences. We show that a suitable transform diagonalizes the community
interaction matrix of these models, making it possible to predict the conditions for niche differentiation and,
close to the instability onset, the asymptotically long time population distributions of niches. We exemplify our
method using the Lotka-Volterra equations with an exponential competition kernel.
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I. INTRODUCTION

Since before “ecology” had a name it had been recognized
that the manner in which species occupying a given ecosystem
exploit that system’s resources is distributed in a markedly
structured, nonuniform manner. More-or-less distinct ecologi-
cal niches are occupied to the exclusion of apparently available
intermediate strategies [1]. This observation has led to a long
history of observational and modeling studies in the effort to
understand, and hopefully be able to predict, the structure,
complexity, and stability of niche occupation [1].

Although it is clear that resource competition is an essential
driver of ecological structure [2], thus leading to niche
differentiation and specialization, it is equally clear that this
idea by itself cannot be the whole story. In particular, it leaves
many unanswered questions about the detailed structure,
reproducibility, and dynamic properties of niche occupation.
Are there, for example, limits to the number of different niches
a given environment can support [3]? Are niches stochastic and
emergent phenomena [4], are they environmentally dictated,
or is a variable interplay of both factors involved [5]?

A particularly interesting set of such questions arise from
the common observation that very closely related species often
coexist in the same environment apparently occupying very
nearly the same, if not identical, niches. It is clear from field
studies and theoretical investigations that multiple factors are
involved in this aspect of niche evolution. For example, the
niche space is highly dimensional, allowing the individuals to
minimize competition by moving into the various directions of
the niche space. A classic example is that of the various types
of Anolis lizards found in tropical rainforests, which share
a common prey, insects, but avoid competition by living in
different parts of the rainforest [6]. Various species of finches
look similar to each other except for such traits as beak design,
which have specialized the finches to different food needs [7].
Analogous observations have been made in (e.g.) plants [8]
and animals [9] and soil microbial communities [10].

Modeling these systems has a history that dates back to the
work of MacArthur and Levins who showed, in Lotka-Volterra
equations, the existence of an upper limit of niche overlap
that allows continued coexistence of extant species [11]. This
concept is called limiting singularity [3]. In their classical

model, infinite resources (i.e., seeds) are described by a
single continuous axis, although progress have been made by
introducing the so-called resource utilization functions (see,
for example, [11–14] or the books [15,16]) which allows
for analyses of partitioning of multiple discrete resources.
Using this formalism, a more realistic, multidimensional
representation of the niche space can be incorporated, yet,
the field lacks a tangible example of an analytically tractable
model. An exception is given by a class of trait-based models,
recently proposed to explain plant biodiversity (see [17–19]),
which are able to incorporate multiple traits, but do not contain
any dynamical element, so that it is not possible to infer which
ecological driver is responsible for niche diversification.

The purpose of this paper is to develop and solve a
framework for analyzing ecological models in which the niche
space is multidimensional. We represent ecological niches
by sequences, and model competition using the Hamming
distance between two sequences. We report analytical progress
by introducing a transform that diagonalizes the interaction
community matrix (i.e., the linear stability operator), and
allows us to compute the conditions for niche differentiation
and, in proximity of the instability onset, the final individual
distributions. Our approach generalizes a previous study [20]
where competing binary genomes have been analyzed in a
similar fashion. Unlike [20], our analysis is not restricted
to binary sequences, as we consider alphabets of arbitrary
size, the size being different for different symbols in the
sequence. Our calculations are presented in the framework
of the competitive Lotka-Volterra model, following previous
studies where the emergence of clusters of similar species [21]
was reduced to an underlying pattern instability [22–24].
The method described in this paper is applicable to any
pattern-forming system in sequence space.

This paper is organized as follows. In Sec. II, we define the
multidimensional niche space using sequences, and introduce
the Lotka-Volterra dynamics on this space. The mathematical
tools for analyzing the model are introduced in Sec. III,
with the technical proofs given in Appendixes A and B.
In Sec. IV, we present specific results for the model under
study. Two cases are discussed: (a) when there is only one
unstable pattern-forming mode (nondegenerate case), and
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(b) when there are many competing, equally unstable, modes
(degenerate case). The nondegenerate case has been reported
previously in simpler niche space models [25–27]. In Sec. V,
we explain how our theory can be used to test ecological
hypothesis against experimental data.

The C code we have used is available as online Supplemen-
tal Material, where we also provide a Mathematica notebook
file with the details of the calculations [28].

II. FORMULATION OF TRAIT-BASED
ECOLOGICAL MODELS

A. Definition of the niche space

In our framework, ecological niches are represented by
sequences of L symbols, each symbol corresponding to a
phenotypical trait that can either denote an aspect of the
morphology, the behavior, or resource consumption, of a
species. The niche space is static, that is, it is not affected by
the dynamics of the populations. Moreover, each individual
can occupy only a single niche.

To be concrete, we assume that in a hypothetical ecosystem,
individuals are characterized by L = 3 traits, for example,
(i) the source from which water is collected, (ii) the preferred
nesting place, and (iii) the preferred prey. Each trait i admits
a certain number of options �i . In our example, let us assume
that there are �1 = 3 water sources (labeled by W1, W2,
or W3), �2 = 9 types of preferred prey (P1, . . . ,P9), and
�3 = 2 nesting places (N1 or N2). More generally, the niche
space consists of L phenotypic traits with � = (�1, . . . ,�L)
possibilities. Each individual lives in an ecological niche which
is denoted by the letters I or J . A niche is obtained by
making a choice for each trait, so that niches are represented
by sequences: for instance, a niche can be I = W1P5N1.
In niche I , there live nI individuals, although we shall use
more often the concentrations XI , related to the number of
individuals by nI = V XI . The system size is identified in this
well-mixed system as the patch size V , and is best thought
of as a nondimensional parameter controlling the amount of
intrinsic noise in the system. Note that in principle XI can be
greater than one. The set of all XI (or nI ) gives the state of the
system.

This way of modeling niches requires a discretization of
traits (and their corresponding options) so that it is natural
to question whether this is ecologically sound. In fact, some
traits, such as body size, humidity, altitude, or temperature,
are better described by continuous variables. However, since
the traits are used to distinguish between ecological niches,
even the continuous traits need to be binned in order to
avoid placing two individuals in different niches due to a
negligible difference. For instance, if we introduce the body
size in our model, then we classify individuals into various
categories such as small, medium, or large body size. If instead
we considered the variable continuous, we would treat two
individuals of comparable sizes as living in different niches,
which is undesirable.

Competition between two individuals depends on the Ham-
ming distance between the niches in which they live, d(I,J ),
that is, the number of positions at which the corresponding
symbols are different in the corresponding sequences [20].

For example, the niches I = W1P5N1 and J = W2P5N2

have Hamming distance d(I,J ) = 2. Thus, the smaller the
Hamming distance, the more two individuals compete. This
means, for example, that if several water sources are present,
we expect the individuals to spread among all sources but
compete only if they collect water from the same source. Also,
competition may occur at multiple positions in the sequence,
so that individuals may compete both for a shared water source
and a shared prey. This way of measuring competition depends
on how different two sequences are but it does not matter which
trait is different: two identical niches but with different water
sources have the same Hamming distance of two identical
niches but with a different preferred prey. This issue can be
solved by adopting a more general distance, in which traits
are weighted according to a weight vector W = (w1, . . . ,wL).
This distance reads as

d(I,J ) =
L∑

l=1

wl δIl ,Jl
, (1)

where Il denotes the lth symbol of niche I (Jl is analogous).
If wl = 1 for every l, this distance reduces to the Hamming
distance. The method presented in Sec. III can be used with
both the Hamming distance and distance (1), but the former
has been chosen for simplicity.

B. Introducing the dynamics: Lotka-Volterra equations

Having defined a niche space, we now need to specify
how the number of individuals per niche evolve in time.
For simplicity, we follow previous studies [22–24] and adopt
the Lotka-Volterra equations with an exponential competition
kernel, as defined in the following.

We consider the following equations:

ẊI = XI

(
1 − 1

C

∑
J

GIJ XJ

)
, (2)

which model birth and death of organisms via competition. The
sum

∑
J is over all possible niches. In this way, we account

for competition between different niches (when I �= J ) and
competition within the same niche (for I = J ). Equations (2)
also assume that each individual reproduces with the same rate
regardless of their niche. We cannot, at the present time, use
our method to investigate the case with different growth rates
for reason that will be clear in the following. We consider the
family of competition kernels [22]

GIJ = exp

[
−

(
d(I,J )

R

)σ]
. (3)

The competition length R and the exponent σ are positive
integers and allow us to consider different choices of the
competition kernel. However, in all of them competition is
more fierce as the Hamming distance decreases since GIJ is
always decreasing in d. Increasing σ stretches the shape of
the competition kernel and as σ → ∞, the kernel G tends to a
stepwise function. We define the carrying capacity

C =
∑

J

GIJ , (4)
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so that the system admits the fixed point X∗ = 1 in addition
to the fixed point X0 = 0, corresponding to mass extinction.
The choice of a constant carrying capacity is consistent since∑

J GIJ is independent of I ; to see this, note that every row in
G must be a permutation of another row and thus has the same
sum.

In order to take into account the effects of intrinsic
noise [29], we define a stochastic model corresponding to
Eq. (2), using the following transition rates T , which define
the probability per unit of time that birth and death occur for
an individual living in niche I :

T (nI + 1|nI ) = XI , (birth),

T (nI − 1|nI ) = C−1 ∑
J GIJ XIXJ (death).

(5)

The first equation indicates that the number of individuals can
increase by one unit with a probability per unit of time XI . The
second equation has an analogous meaning. Note that in the
stochastic model, the quantities nI (and thus XI ) are subject to
discrete increments, whereas in Eqs. (2) the concentrations
are continuous variables. The difference between the two
models is controlled by V and, as V → ∞, the stochastic
system (5) recovers the deterministic description in Eqs. (2).
All numerical simulations in the paper are performed using
the Gillespie algorithm [30], which simulates the stochastic
model (5).

III. ANALYSIS

In this section, we show that the fixed point X∗ undergoes
a pattern instability in niche space which drives the system
to diversification. To analyze the instability, we define a
suitable transform [Eq. (9)] that diagonalizes matrices whose
element depends on the sequences only via their Hamming
distance (i.e., Hamming matrices). By doing so, we are able
to diagonalize the linear stability operator (i.e., the Jacobian
matrix) of the fixed point X∗.

Transform (9) is at the core of our analytical treatment.
We have arrived at this formula by generalizing the Hadamard
transform (−1)|I ·J |, previously used in the study of competing
binary genomes [20]. Another way to understand transform (9)
is by noting that Hamming matrices are special cases of a
general class of matrices called block circulant with circulant
blocks (BCCB), whose diagonalizer is known [31]. Using
this latter fact, we show that the spectrum of Hamming
matrices can be obtained explicitly [Eq. (17)], which allows
a straightforward investigation of the properties of the pattern
instability.

A. Pattern instability in niche space

The Lotka-Volterra equations (2) admit the fixed point
X∗ = 1, which corresponds to a homogeneous distribution of
individuals in niche space. If the fixed point is unstable, small
perturbations grow exponentially fast and the system relaxes to
a nonhomogeneous profile, as described by pattern formation
theory [32]. To inspect for instabilities, we linearize Eq. (2)
around the fixed point X∗. Denoting the small deviations by
δXI = XI − X∗, we arrive at (in vectorial notation)

d

dt
δX = J δX =− 1

C
G δX. (6)

To check for the stability of this system, we diagonalize the
linear stability operator J . Again, recall that the elements of
J are defined by

JIJ = f (d(I,J )), (7)

and retain a dependence in the sequences I and J only via
their Hamming distance. We call matrices with this property
Hamming matrices. The overall dimension of matrix J is
D × D, where D is the total number of niches, namely,

D =
L∏

l=1

�l. (8)

As shown in Appendix A, Hamming matrices are special cases
of a general class of circulant matrices and are diagonalized
by

F = F�1 ⊗ . . . ⊗ F�L
, (9)

where the symbol ⊗ indicates the Kronecker product between
two matrices A and B:

A ⊗ B =

⎡⎢⎣A11B · · · A1dB
...

. . .
...

Ad1B · · · AddB

⎤⎥⎦. (10)

The matrix F�l
(l = 1, . . . ,L) is the �l × �l discrete Fourier

matrix defined by

(F�l
)jk = exp

(
i
2πjk

�l

)
, (11)

where i denotes the imaginary unit and with normalization
F†

�l
F�l

= I�l
(the symbol † stands for the conjugate transpose

and I�l
is the �l-dimensional identity matrix). The indexes j

and k range from one to �l . Since F�l
is unitary, then F is

unitary as well: F†F = ID . Note that transform F is not, in
general, a Fourier transform since (for example for L = 2 and
�1 = �2 = 2), F = F2 ⊗ F2 �= F4.

Applying F to both sides of Eq. (6) yields the decoupled
equations

d

dt
δX̃K = JKδ̃XK, (12)

where we have defined the transformed vector

δX̃K =
∑

I

FKI δXI , (13)

and JK are the eigenvalues of matrix J :

JK = (FJF†)KK. (14)

Note that the eigenvalues JK are real given that Hamming
matrices are symmetric, i.e., JIJ = JJI .

The variable K is the conjugate variable, in transformed
space, to the sequence variable I , and ranges from one to D.
When JK > 0, for some K , the fixed point X∗ is unstable
and the amplitude of the corresponding eigenmode v(K), with
component

v
(K)
M = F†

MK, (15)

grows in the system. Note that since F is unitary, its rows
form an orthonormal basis in sequence space, with respect to
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the canonical inner product so that

v(K1) · v(K2) =
D∑

M=1

v
(K1)
M v

(K2)∗
M = δK1,K2 . (16)

The symbol ∗ stands for the complex conjugate and the
dimension D is given by Eq. (8).

B. Spectrum of Hamming matrices

Transform (9) diagonalizes matrix (7), yet, carrying out
the matrix product FJF† may not be feasible as the
dimensionality D of Hamming matrices can be very large,
even for low dimensional niche spaces. However, by extending
Theorem 5.8.1 of [31], we can obtain a compact expression for
the eigenvalues and eigenmodes of any Hamming matrix J .
The result is stated in the following and proved in Appendix A.

Let us consider any Hamming matrix J defined by Eq. (7)
via a certain function f . Then, the Kth eigenvalue of J ,
denoted by JK , is given by

JK =
⎧⎨⎩

L∏
l=1

�l−1∑
kl=0

[
B(k1, . . . ,kL)

(
�

k1
1 ⊗ . . . ⊗ �

kL

L

)]⎫⎬⎭
K

,

(17)

where we have used the following definitions:

B(k1, . . . ,kL) = f

(
L −

L∑
l=1

δkl ,0

)
,

ωl = exp

(
i
2π

�l

)
, (18)

�l = diag
(
1,ωl,ω

2
l , . . . ,ω

�l−1
l

)
.

The dependence on matrix J is contained in function B,
which returns the function f , evaluated on the number of
nonzeros which are passed to B as argument. For example,
for L = 3, B(1,0,0) = f (1). In Eq. (17), the notation �

k1
1

means that every element of the diagonal matrix �1, whose
diagonal is given by the argument of the function diag(. . .), is
elevated to the power k1. Also, note that JK is a scalar quantity,
given by the Kth entry of the diagonal of the matrix defined
between parentheses in the right-hand side of Eq. (17). The
Supplemental Mathematica file contains an implementation
of this formula.

The corresponding eigenmode to the Kth eigenvalue is
given by Eq. (15), and does not depend on the system
parameters but only on the dimension of the niche space. This
fact is not surprising, as it is analogous to what occurs in other
cases, such as in systems diagonalized by a discrete Fourier
transform. Note that if an eigenvalue is degenerate, i.e., there is
more than one corresponding eigenmode, then the eigenvalue
appears in Eq. (17) once for each eigenmode.

In the following section, we use formulas (17) and (15) for
computing eigenvalues and eigenmodes of Hamming matrices
and show how the linear theory can be used to predict the
asymptotically long time population distributions of niches.
There is an alternative way for representing the spectrum of
Hamming matrices, which is given, and proved, in Appendix B
[Eq. (B3)]. In doing that, we have been able to show

that the leading eigenvalue in pattern-forming instabilities is
nondegenerate if and only if the alphabet is binary (i.e., �l = 2,
for each l). Thus, the typical case consists of a degenerate
instability, where many equally unstable eigenmodes compete
for their emergence.

IV. TWO CASES STUDY

We have established the mathematical tools that we need to
inspect the pattern instability in Eqs. (2). We now show that
the linearly unstable eigenmodes give a prediction for the final
distribution of individuals in niche space, in proximity of the
instability onset. Two cases are investigated: a nondegenerate
and degenerate instability. In the former case, the analytical
prediction matches the result of stochastic simulations. In the
latter, simulations show a different final individual distribution
at every run, due to stochastic effects (or the initial condi-
tion) that randomly privilege some of the equally unstable
competing eigenmodes. However, the dynamics averaged over
many runs shows consistency with the prediction of the linear
theory, as also reported previously in a one-dimensional niche
model [25,26].

In Sec. IV B, we also report the observation of stochastic
patterns, or noise-induced patterns, which arise when a weakly
stable eigenmode is subject to noise. Since we investigate cases
where the homogeneous state is linearly unstable, stochastic
patterns are superposed to deterministic patterns, and the
difference between the two is that the amplitude of stochastic
patterns decrease as the patch size V increases.

A. Case: Nondegenerate instability

We first study a simple case that displays a single-mode
instability. We begin by considering binary sequences of four
bits L = 4, �l = 2 (for every l = 1, . . . ,4), and parameter
values R = 1 and σ = 2. We find it useful to reorder the
eigenmodes so that we can interpret K as a wavelength.
For the case of binary sequences, the eigenmodes (15) are
manifestly real and we define the wavelength as the number
of times that the eigenmode v(K) crosses the K axis. We then
reorder the eigenmodes by increasing wavelength. Note that it
is always possible to choose a real basis of eigenmodes given
that Hamming matrices are symmetric, however, since we use
Eq. (15) for their expressions, the chosen eigenmodes are real
only for certain cases.

The spectrum of matrix J , calculated using Eq. (17) and
then reordered, is shown in Fig. 1. Each eigenvalue (red dots)
is stable except the one with wavelength K = 11 (K = 16,
without reordering) and the profile of the corresponding
eigenmode is shown in the inset. Thus, starting close to
the homogeneous state causes the growth of the eigenmode
v(11), while the other eigenmodes decay away. The growth
is eventually damped by the effect of the nonlinearities,
which become relevant as the system moves away from the
homogeneous state.

The final individual distribution is given by a superposition
of those eigenmodes predicted to be unstable in the linear
analysis. In this case, there is a single unstable mode so
that we expect the final individual distribution to exhibit a
shape analogous to v(11). The results of stochastic simulations,
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FIG. 1. (Color online) (Main figure) The spectrum of J , {JK}
(red dots), is calculated with Eq. (17) and shown as a function of the
increasing wavelength K , after a reordering as explained in Sec. IV A.
The blue line has been added for clarity. Parameter values: L = 4,
�l = 2, R = 1, and σ = 2. (Inset) The components of eigenmode
v(11) for the same parameter values.

displayed in Fig. 2, show agreement between the final state
and that predicted in the inset of Fig. 1. Note, however, that
on some simulation run, the pattern may sometimes appear
reversed, as either of the eigenmodes v(11) or −v(11) may grow.

Another way to check the agreement between theory and
simulations consists of expressing the final state X, measured
from the simulations, as a superposition of the eigenmodes, i.e.,

XI − X̄ =
∑
K

A(K)v(K)
I . (19)

The profile X is renormalized to zero average, by subtracting
X̄ = d−1 ∑

I XI , in order to avoid a large component in
A(K = 0). The quantities A(K), obtained by taking the scalar
product between X and v(K), give the extent to which that

FIG. 2. (Color online) (Main figure) The concentrations XI as a
function of the individuals I (represented as binary sequences at the
top of the figure), obtained by running stochastic simulations for time
t = V ∗ 102 with V = 103 and other parameter values as in Fig. 1.
(Inset) The absolute value of A(K) [Eq. (20)] obtained from the final
individual distribution shown in the main figure.

eigenmode emerges in the final pattern. Specifically,

A(K) = (X − X̄) · v(K), (20)

where the centerdot is the scalar product (16). For our previous
case, we expect that A(K) is approximately zero for every
wavelength except K = 11, on which it takes a positive (resp.
negative) value, given that v(11) (resp. −v(11)) has grown. This
is confirmed by the inset of Fig. 2, where the absolute value
of A(K) is shown. Note that both solutions v(11) and −v(11)

yield the same contribution to |A(K)| since we have taken the
absolute value.

The solution displayed in Fig. 2 is metastable, in that,
sooner or later a large rare fluctuation will lead the system to
extinction since nI = 0, for all I , is an absorbing state. Such
a fluctuation is very rare and not observable in simulations
for time scales ∼V ∗ 1̇06. Therefore, the solution can be
considered evolutionarily stable for practical purposes.

As a final remark, let us note that we have verified
the agreement between linear theory and simulations for
various parameter instances and noise realizations. Results
are not shown for the sake of compactness, but the case
discussed above is the prototypical example when a single-
mode instability is in play.

B. Case: Degenerate instability

Does the linear stability analysis provide a reliable predic-
tion for a general case? Typically, the instabilities in these kinds
of models are highly degenerate as they possess many equally
unstable eigenmodes. For example, let us consider the case
discussed in the Introduction where L = 3, �1 = 3, �2 = 9,
and �3 = 2 with σ = 2 and R = 1. For this case we do not
reorder the eigenmodes. The spectrum (dots of Fig. 3) indicates
that there are 16 unstable eigenmodes, each corresponding to
the same eigenvalue. When a degenerate instability is in play,
the fate between the competing eigenmodes is determined
by the nonlinearity, the intrinsic noise and the initial condition
so that deviations from the linear prediction are expected.

FIG. 3. (Color online) The spectrum of J , {JK} (red dots), is
calculated with Eq. (17) and shown as a function of K for parameter
values: L = 3, �1 = 3, �2 = 9, and �3 = 2 with σ = 2 and R =
1. The blue line has been added for clarity. Note that the (stable)
eigenvalues corresponding to K = 1,19,39 are not visualized in the
plotted range.
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FIG. 4. (Color online) Final niche distribution of a single run.
Parameter values as in Fig. 3 but with V = 102. The simulation has
run for time T = 103V .

For example, let us examine the result of a single run,
shown in Fig. 4. Unlike the binary alphabet case, the behavior
displayed is now quite rich: in some niches the population goes
extinct, while other niches are scarcely populated, and few of
them contain a large number of individuals. Computing the
profile A(K) for this niche distribution (not shown) yields a
significantly different result to what is predicted in Fig. 3. Since
there are many equally unstable eigenmodes, stochasticity
gives a random advantage to some of them, which then grow
faster and overwhelm the growth of the other unstable modes.
Only the eigenmodes which have been privileged in this way
appear in the final profile, which is thus not predictable.

Although the fate of a single run is not captured by our
analysis, we may ask whether the average behavior resembles
the prediction of the theory. We therefore compute the profile
|A(K)|, averaged over several runs. The result, shown in
Fig. 5, indicates that the highest values of 〈|A(K)|〉 correspond
indeed to the eigenmodes predicted to be unstable by the
spectrum in Fig. 3. Interestingly, the profile |A(K)| assumes
small, but nonzero, values for the K’s corresponding to stable
eigenmodes. This is an example of stochastic patterning,

10 20 30 40 50

1

2

3

4

FIG. 5. (Color online) The average absolute value of A(K) (red
dots), obtained by averaging formula (20) over 104 runs. Parameter
values as in Fig. 3 but with V = 102. Each simulation has run for
time T = 103V . The blue line has been added for clarity.

pattern formation caused by a slowly relaxing eigenmode
subject to intrinsic noise, which have already been observed
in predator-prey [33] and reaction-diffusion systems [34].

Stochastic patterns could have also been visible in the case
studied in the previous section since, as shown in Fig. 1,
the wavelengths K = 6 and 14 are close to the onset of
instability. However, unlike deterministic pattern formation,
the amplitude of stochastic patterns depends on the magnitude
of the perturbation which cause them, the intrinsic noise, and
therefore scales as V −1/2 [29]. Having chosen V = 103 for
generating Figs. 1 and 2, and V = 102 for Figs. 3 and 5, has
rendered the stochastic patterns visible only in the latter two
figures. Indeed, redoing the simulations for Fig. 5 but with
a larger value for V , yields a profile 〈|A(K)|〉 which is zero
everywhere except the unstable eigenmodes.

V. TESTABILITY OF THE THEORY

The theory presented so far provides a tool for linking niche
distributions, based on multiple traits, to the individual-based
interactions that govern ecosystems. We show in this section
how the theory can be used, in principle, to test an ecolog-
ical idea against data from a ecosystem. As a prototypical
example, let us consider a certain data set representing species
abundances and ask the following question: “Is competitive
exclusion the primary driver of ecological diversification?”

A. Representing ecological and/or morphological niches

To begin with, we extrapolate the niche distribution from
the species abundances data. In order to identify the possible
niches, we need to select those traits within which we want
to divide the species. These traits can refer both to the
morphology of the species (e.g., the body size) or describe
an aspect of their behavior (e.g., the nesting place). We allow a
number of possibilities to each trait (e.g., individuals of small,
medium, or large body size), so that the niche space can be
mapped into the abstract sequence space, in the same way as
described at the beginning of Sec. II. We can then visualize the
number of individuals per niche, in a similar fashion to Fig. 4.

B. Transforming the niche distribution

Once the sequence space has been established, we can
define transform (9), that relies solely on the geometry of the
niche space (i.e., how many traits and how many possibilities
per trait). We then transform the niche distribution, using the
eigenmodes (15) and (20), to yield a figure analogous to Fig. 5.
The peaks of the figure will highlight the emerging eigenmodes
in the system. The aim is to predict the emergence of those
peaks starting from the individual-based interactions.

C. Agreement with an individual-based model

The individual-based model is represented by set of
differential equations such as system (2), and should include
the effects which are supposedly the main drivers for niche
diversification. For example, if we assume that competitive
exclusion is the sole, or principal, driver, then we can use
directly the Lotka-Volterra equations (2). The prediction of
the model can be read off by looking at its spectrum, such
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as in Fig. 3: The eigenmodes predicted unstable are those
which correspond to positive eigenvalues, that is, appear
above the K axis. These eigenmodes should be compared
against those observed in the data. An agreement between the
two sets of eigenmodes indicates that the interactions in the
individual-based model are effectively responsible for niche
diversification.

VI. CONCLUSION

In this paper, we have proposed a class of ecological models
which display niche diversification due to competitive interac-
tions. Our approach allows for analyzing highly dimensional
niche spaces: An arbitrary number of phenotypic traits can
be included in the model, each admitting a certain number
of possibilities. In this way, the geometry of the niche space
is intrinsically different from the conventional picture where
ecological niches are represented by hypercubes in Rn. Also,
niche overlapping is given by the Hamming distance, rather
than the Euclidean distance, which is a simpler and a more
realistic way to quantify how many traits two individuals have
in common.

Most of the paper is centered on the mathematical aspects
for analyzing these models. We have shown that the underlying
pattern instability can be predicted using the mathematical
tools presented in Sec. III B. The linear stability operators
(i.e., Jacobian matrices) depend on the niche indexes only via
their Hamming distance, and we have called such matrices
Hamming matrices. We have shown that Hamming matrices
are special cases of a class of circulant matrices (i.e., BCCB),
so that we can use the diagonalizer of the latter for obtaining the
spectrum of Hamming matrices. In this way, we have arrived
at formulas (17) and (15) which are our central results. By
using these expressions, we have then shown that the linear
stability analysis, for systems close to the instability onset,
predicts the final individual distribution in niche space, and
that the prediction agrees on average if a degenerate instability
is present.

Let us comment on the limitation of this work. Our
discussion has been centered on the agreement between
theory and simulations and on the method for diagonalizing
Hamming matrices, but little has been said about how the niche
distribution is affected by the niche space dimensionality. It
would be relevant for ecology to study formula (17) in the limit
D 
 0, but this appears not to be a straightforward task as it
requires a substantial mathematical analysis that will be the
subject of future work. In a similar way, it would be interesting
to generalize Eqs. (2) to the case of different growth rates.
However, in this case, we cannot diagonalize anymore the
corresponding linear stability matrix by using transform (9)
because there is no guarantee that the linear stability matrix
will be a Hamming matrix. Finally, it would be more desirable
to obtain the analog of formula (17) using the more realistic
distance (1). This also highlights another direction for a future
work.

An alternative interpretation for our class of models is that
of interacting genomes, where L represents the genome length
and �l = 4 for all l (the symbols are now nucleotides: A, G, T ,
D). Indeed, the advent of population genetics has stimulated
a similar kind of modeling, which has attracted interest in the

physics community thanks to quasispecies theories [35–39]
and paramuse models of evolution [39,40]. The connection
between these studies and our work is that in both cases the
models are sequence based [39], in that they describe the
dynamics of an interacting population in which each individual
is represented by a sequence. Binary sequences are often
analyzed as they allow analytical approaches, such as mapping
the model into the Ising model [41–43], considering various
limits [44], or by using a Hadamard transform [20]. We expect
our theory to be applicable to these models as well, allowing
for generalizations in which larger alphabets are considered.
This represents another possible direction for future works.

Finally, let us notice that throughout the paper, our
analytical treatment is limited to the deterministic level for
simplicity, even though we have shown that the stochastic
model exhibits stochastic patterning, caused by weakly stable
eigenmodes subject to intrinsic noise, as shown in Ref. [20]
for the case of binary sequences. The same authors have also
reported a different type of stochastic patterning based on the
multiplicative nature of noise [45], which occurs where the
noise is strong in the system. This effect can lead to stable,
noise-induced patterns. We expect that our model can exhibit
this type of order as well. Further investigations will be devoted
to extend our method for analyzing the stochastic counterparts
of these models.
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APPENDIX A: BLOCK CIRCULANT MATRICES
WITH CIRCULANT BLOCKS

The aim of this Appendix is to prove formulas (17) and (18)
of the main text. These equations provide an expression for
the spectrum of a matrix J whose element JIJ retains a
dependence in I and J solely via their Hamming distance, i.e.,
JIJ = f (d(I,J )). We have called these matrices Hamming
matrices. We shall show that these matrices possess a block-
circulant structure (defined in the following), which allows us
to compute their eigenvalues and eigenmodes. The reference
for this section is the book of Davis [31].

A matrix is circulant if each row vector is rotated one
element to the right relative to the preceding row vector.
Clearly, a circulant matrix is fully specified by one row as the
others are simply given by cyclic permutations. For example,
a 3 × 3 circulant matrix has the form

J =
⎡⎣c0 c2 c1

c1 c0 c2

c2 c1 c0

⎤⎦. (A1)
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In this definition, the symbols c0, c1, and c2 represent numbers.
On the other hand, if c0, c1, and c2 are circulant matrices
themselves, then J is called a circulant matrix of level
two. More generally, a circulant matrix of level L can be
decomposed in blocks which are circulant matrices of level
L − 1. A circulant matrix of level one is tantamount to say
that the matrix is circulant.

The size of the blocks can be different at each step and
specifies the type of the matrix. For example, we say that a
circulant matrix of level 3 is of type (�1,�2,�3), if it can
be divided in �1 × �1 blocks, each of which can be divided
in �2 × �2 blocks, each of which is a circulant matrix with
dimension �3 × �3. In general, a circulant matrix of level
L is of type � = (�1, . . . ,�L). Thus, the level is specified
automatically by the length of the type. The following matrix
is an example of type (2,3,2):

P(2,3,2)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 2 1 2 1 2 2 3 2 3
1 0 2 1 2 1 2 1 3 2 3 2
1 2 0 1 1 2 2 3 1 2 2 3
2 1 1 0 2 1 3 2 2 1 3 2
1 2 1 2 0 1 2 3 2 3 1 2
2 1 2 1 1 0 3 2 3 2 2 1
1 2 2 3 2 3 0 1 1 2 1 2
2 1 3 2 3 2 1 0 2 1 2 1
2 3 1 2 2 3 1 2 0 1 1 2
3 2 2 1 3 2 2 1 1 0 2 1
2 3 2 3 1 2 1 2 1 2 0 1
3 2 3 2 2 1 2 1 2 1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A2)

Let us now consider a niche space defined by sequences,
as explained in Sec. II. We assume that sequences are long L

characters, the character at position l chosen from an alphabet
of size �l . If �l < 10, for every l, we can represent the
sequences using the digits 0–9; e.g., �1 = 3 indicates that at
position one of the sequence there is one of the three symbols:
0, 1, or 2. The size of each alphabet is summarized by the
vector � = (�1, . . . ,�L) and the sequences are as ordered as
the corresponding numbers. For example, the sequence space
defined by � = (4,2,3) starts from 000 and ends in 312. The
number of possible sequences is D = ∏L

l=1 �l = �1�2�3 =
24.

The Hamming distance between two sequences I and
J is denoted by d(I,J ) and corresponds to the number of
positions at which the corresponding symbols are different.
For instance, I = 102 and J = 100 have Hamming distance
one. Two sequences are identical if and only if their Hamming
distance is zero.

Let us consider the simplest Hamming matrix of type �,
P�, in which the function f is the identity. The corresponding
matrix element is P�,IJ = d(I,J ). Considering, for example,
� = (2,2), matrix P� looks as follows:

P(2,2) =

⎡⎢⎣0 1 1 2
1 0 2 1
1 2 0 1
2 1 1 0

⎤⎥⎦ . (A3)

It is clear that P(2,2) is also a circulant matrix of type (2,2). In
general, a Hamming matrix acting on a sequence space defined
by � is a circulant matrix of type �.

Any circulant matrix J of type � admits a decomposition
(see Theorem 5.8.1 in Ref. [31]) which, for simplicity, is given
in the following for the case L = 2 (generalization to arbitrary
L are straightforward):

J = F†

[
�1−1∑
k1=0

�2−1∑
k2=0

B(k1,k2)
(
�

k1
1 ⊗ �

k2
2

)]
F . (A4)

The decomposition uses the definitions of F and �l in Eqs. (9)
and (18). The function B(k1,k2) returns the element of J
corresponding to the k2th block with size �2 and its k1th
subblock, where the blocks are indexed by the following
convention: If kl = 0, then the block is on the main diagonal,
otherwise it is one of the blocks off diagonal. In both cases, it is
not important which block is taken, as the circulant structure of
the matrix leads to the same result. For example, let us consider
the element B(k1 = 1, k2 = 0) of the level two circulant matrix
of Eq. (A3). The variable k1 = 1 indexes an off-diagonal 2 × 2
block. Within that block, k2 = 0 indexes the value of either of
the two diagonal elements. Due to the circulant structure of
the matrix, those values are identical.

The decomposition (A4) proves that circulant matrices
are diagonalized by transform (9) since the term inside the
parentheses is a diagonal matrix. Thus, Hamming matrices are
diagonalized by the same transform.

To arrive at formula (17), we need to show that B(k1,k2) =
f (2 − δk1,0 − δk2,0), which is true for Hamming matrices
but not for a general circulant matrix. We begin with the
observation that matrix P(�1,...,�L) possesses a simple block
structure: The blocks on the diagonal are given byP(�1,...,�L−1),
whereas the blocks off diagonal are given by the diagonal block
but with all elements incremented by one. For instance, for the
case � = (2,2), we have that

P(2,2) =
[

P(2) P(2) + 1
P(2) + 1 P(2)

]
, (A5)

where

P(2) =
[

0 1
1 0

]
, 1 =

[
1 1
1 1

]
. (A6)

We can exploit the block structure of P� to obtain the form
of the corresponding function B(k1, . . . ,kL). This function
returns the element of matrix P�, which is an integer equal
to the number of off-diagonal blocks necessary to locate the
element. With our convention, this is equal to the number of
nonzero kl’s. For example, in the P(�1,�2) case, we have that
B(k1,k2) = 2 − δk1,0 − δk2,0.

For a general Hamming matrix, we can follow the above
reasoning, but replacing d(I,J ) with f (d(I,J )) for the element
of the matrix. As a consequence, the form of function B(k1,k2)
for a general Hamming matrix of type (�1,�2) reads as
B(k1,k2) = f (2 − δk1,0 − δk2,0). Formula (17) in the main text
is its generalization to a sequence of arbitrary length L.
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APPENDIX B: DEGENERACY STRUCTURE OF THE
SPECTRUM OF HAMMING MATRICES

The aim of this Appendix is to prove that the leading
eigenvalue of a Hamming matrix is nondegenerate if and only
if the alphabet of the sequences is binary (i.e., �l = 2, for
each l). The proof is, as it stands, not useful for analyzing
data. However, it enables us to prove a theorem that can be
used in conjunction with the results of Secs. III B and V to
identify ecological drivers of niche diversification.

Let J be a Hamming matrix generated by a function f as
defined in Eq. (7). For each binary sequence s = (s1, . . . ,sL),
where we write |s| = ∑

� s�, define the polynomial

ps(α,β) = (β − α)L−|s|
L∏

�=1

[(�� − 1)α + β]s� . (B1)

Now, define the vector ηs so that ps is its generating function,
i.e.,

ps(α,β) =
L∑

k=0

η(k)
s αkβL−k. (B2)

Said another way, η(k)
s is the coefficient of αk in the polynomial

ps. Now define

λs =
L∑

k=0

f (k)η(k)
s . (B3)

Then, λs is an eigenvalue of J with multiplicity

μs =
L∏

l=1

(�l − 1)1−sl . (B4)

We prove these formulas below, but for now note that it follows
from this that if �� > 2 for all �, then the only nondegenerate
eigenvalue of J is λ1. We also show below that if J = G/C

as defined in Eqs. (4) and (6), then λ1 = −1. In particular, this
means that if �l > 2 for all l, then it follows that the unstable
eigenvalue is never nondegenerate, and the system is always
in the degenerate case described above.

Also, if �l = �l′ for some l,l′ and s,s′ are two vectors
related by a transposition of the lth and l′th coordinates, then
λs′ = λs. In particular, if all of the �l are the same (call these
numbers �), then ps (and thus λs) depends only on |s|, giving
even more repeats. For example, if �l = 2 for all l, then there
are L + 1 distinct eigenvalues, with multiplicities given by
L!/k!(L − k)!. This is because even though μs = 1 for all s,
ps is the same for all s with the same number of ones. For
example, if L = 3 and �l = 2 for all l,

λ111 = f (0) + 3f (1) + 3f (2) + f (3),

λ110 = λ101 = λ011 = f (0) + f (1) − f (2) − f (3),
(B5)

λ010 = λ100 = λ001 = f (0) − f (1) − f (2) + f (3),

λ000 = f (0) − 3f (1) + 3f (2) − f (3).

From this, we see that there are two ways in which we can
obtain multiple eigenvalues: We could have μs > 1 for some
s, or we could have λs = λs′ for two different s,s′.

We will establish (B3) and (B4) in the case L = 2, then
discuss how the argument differs for larger L. According

to (17), when L = 2 the eigenvalues are the numbers

�1−1∑
k1=0

�2−1∑
k2=0

B(k1,k2)
(
�

k1
1 ⊗ �

k2
2

)
,

with �l = (1,ωl,ω
2
l , . . . ,ω

�l−1
l ). Said another way, for any

�1 = 0, . . . ,�1 − 1 and �2 = 0, . . . ,�2 − 1, the number

λ�1,�2 =
�1−1∑
k1=0

�2−1∑
k2=0

B(k1,k2)ω�1k1
1 ω

�2k2
2

is an eigenvalue. For L = 2,

B(k1,k2) =
⎧⎨⎩0, k1 = k2 = 0

1, k1 = 0,k2 �= 0 ∨ k1 �= 0,k2 = 0
2, k1 �= 0,k2 �= 0.

This means that

λ�1,�2 = f (0) + f (1)

(
�1−1∑
k1=1

ω
�1k1
1 +

�2−1∑
k2=1

ω
�2k2
2

)

+ f (2)

(
�1−1∑
k1=1

�2−1∑
k2=1

ω
�1k1
1 ω

�2k2
2

)
.

We need the following identity:

�−1∑
k=1

[exp(2πi/�)]k� =
{
� − 1, � = 0 mod �,

−1, else.

From this, we see that there are four cases for the formula for
λ�1,�2 , depending on whether or not �1,�2 are zero or nonzero:

f (0) + f (1)(�1 + �2 − 2) + f (2)(�1 − 1)(�2 − 1)

(�1 = �2 = 0),

f (0) + f (1)(�2 − 1) + f (2)(1 − �1) (�1 �= 0,�2 = 0),

f (0) + f (1)(�1 − 1) + f (2)(1 − �2) (�1 = 0,�2 �= 0),

f (0) + f (1)(−2) + f (2) (�1,�2 �= 0),

and we see that this matches the coefficients of the four
polynomials:

[α + (�1 − 1)β][α + (�2 − 1)β],

[α + (�1 − 1)β](α − β), (B6)

(α − β)[α + (�2 − 1)β], (α − β)2,

respectively. Also, we can see from counting that the four
different numbers have multiplicities 1, �1 − 1, �2 − 1, and
(�1 − 1)(�2 − 1), respectively.

Finally, we claim that if the matrix is defined as in Eq. (6),
then the eigenvalue λ1 = −1. To see this, notice that the �1 =
�2 = 0 term above is

f (0) + f (1)(�1 + �2 − 2) + f (2)(�1 − 1)(�2 − 1).

Notice that this must be the carrying capacity C since each
row of G must have one term of size f (0), �1 + �2 − 1
terms of size f (1) (this is the number of sequences that
are unit Hamming distance from any given sequence), and
(�1 − 1)(�2 − 1) terms of size f (2) (similarly, the number of
sequences distance two from any given sequence). Therefore,
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the largest eigenvalue of G/C is 1 and thus the smallest eigen-
value of −G/C is −1. Moreover, if �1,�2 > 2, then it is clear

from the multiplicities that any positive eigenvalue of −G/C

is a multiple eigenvalue, giving rise to a degenerate instability.
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