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Velocity statistics for interacting edge dislocations in one dimension
from Dyson’s Coulomb gas model
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The dynamics of edge dislocations with parallel Burgers vectors, moving in the same slip plane, is mapped
onto Dyson’s model of a two-dimensional Coulomb gas confined in one dimension. We show that the tail
distribution of the velocity of dislocations is power law in form, as a consequence of the pair interaction of
nearest neighbors in one dimension. In two dimensions, we show the presence of a pairing phase transition in a
system of interacting dislocations with parallel Burgers vectors. The scaling exponent of the velocity distribution
at effective temperatures well below this pairing transition temperature can be derived from the nearest-neighbor
interaction, while near the transition temperature, the distribution deviates from the form predicted by the
nearest-neighbor interaction, suggesting the presence of collective effects.
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I. INTRODUCTION

At mesoscopic scales, crystalline materials under stress
exhibit intermittent behavior through plastic slip avalanches
that follow the power-law statistics predicted by the mean
field theory of interface depinning transition [1–10]. The
origin of intermittency in plastic strain rate fluctuations is
attributed to the collective dynamics of dissipative structures,
such as dislocations, where shear deformation is localized.
In addition to the heterogeneous strain response, the long
range elastic interactions between dislocations lead to complex
spatial-temporal patterning and correlations [11]. Plastic slip
avalanches mediated by dislocations have been studied numer-
ically using discrete dislocation dynamics models [2,12,13]
and phase field crystal models [10].

A point edge dislocation generates in two dimensions a
shear stress that decays as 1/|�r| with a quadrupole anisotropy
of the form

τ (�r) = bμ
x(x2 − y2)

2π (1 − ν)(x2 + y2)2
, (1)

where �r = (x,y) is a position vector with respect to the
dislocation origin, b is the length of the Burgers vector parallel
to the x direction (�b = bx̂), μ is the shear modulus, and ν

is the Poisson ratio [14]. The discrete dislocation dynamics
(DDD) model describes a collection of N edge dislocations
with pairwise interactions mediated by the internal shear stress
τ from Eq. (1). Each dislocation performs an overdamped
motion along the x direction described by [2,12,15]

η

b

dxi

dt
= b

∑
j �=i

τ (�ri − �rj ), ∀i = 1, . . . ,N, (2)

where η/b is an effective friction coefficient per unit dislo-
cation length [16]. Most of the DDD simulations are done
at zero temperature and focus on the collective effects of
dislocations in the presence of an external, uniform stress.
Starting from a random configuration, the system relaxes
according to Eq. (3) towards a frozen metastable configuration.
At a nonvanishing external stress below a critical threshold, the

relaxation dynamics follows a power-law scaling in time with
exponents depending on the physical setup [16,17]. Above a
critical threshold and after a transient power-law relaxation, the
system approaches a stress-dependent plateau corresponding
to steady-state plastic flow.

Since the velocity of each dislocation is proportional to the
stress at the position of the dislocation, in a translationally
invariant system, where the probability density of position
of dislocations is uniform, the distribution of velocity v of
dislocations has the same functional form as the distribution of
internal stress. Although the velocity distribution of individual
dislocations (or, equivalently, the distribution of internal stress)
has not been directly measured, from a theoretical point
of view, it is a better defined quantity compared to the
distribution of acoustic energy of plastic slip avalanches,
as one does not need to deal with the arbitrarily defined
thresholds and coarse-graining time scales that show up
in the definition of slip events in avalanches. Also, in a
discrete dislocation dynamics simulation, as a measure of the
statistical properties of the system, the stress distribution can
be numerically calculated and analyzed more effectively than
the pair correlation function [18].

While the local stress fluctuations are known to be power-
law distributed, different exponents have been found in the
literature depending on the details of the models and methods
used in the particular studies. The probability distribution of
stress is analytically studied in Ref. [19] for a two-dimensional
statistical model, and a power-law scaling τ−3 is found for
the high stress tail of the stress distribution in equilibrium
configurations. A similar power law, found in the high
velocity tail of the velocity distribution in both two and three
dimensions in discrete dislocation dynamics simulation in
Ref. [20], is attributed to the avalanche dynamics and has been
shown to be independent of the value of the external stress.
However, at intermediate stresses, when a pair of oppositely
oriented dislocations can be approximated by ideal dipoles,
the stress distribution has been shown to have the exponent
−2 [18]. Reference [2] shows that the E−3/2 distribution
of the acoustic energy, E, of avalanches that is measured
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experimentally is associated with the power-law distribution
of velocity of dislocations with an exponent −2.5 that is again
independent of the value of the external stress. In this study,
the presence of avalanches and intermittency of the system
was attributed to dislocation pair-creation through Frank-Read
sources.

In Refs. [2,5,20,21] discussed above, the robust power-
law distributions for the different avalanche variables of the
collective dislocation dynamics are attributed to self-organized
criticality, while other studies [8,10,22,23] show that, in fact,
the avalanche statistics is a signature of a fine-tuned critical
behavior predicted by the mean field depinning transition.
Reference [22] derives the density dependence of the critical
stress below which the system of dislocations are jammed
and proposes a phase diagram by analogy with the jamming
transition in granular materials [24] in which stress and
temperature play symmetric roles.

Although the DDD method has been extensively used to
investigate plastic flow problems, most studies are based on
a deterministic, athermal approach. Hence, the classical DDD
model is not suitable for simulating thermally activated pro-
cesses, such as dislocation-obstacle interactions. In athermal
DDD simulations, the system gets trapped into a metastable
configuration, causing unphysical freezing of dislocation mo-
tion. Hence, it is challenging to study equilibrium properties of
dislocation ensembles in athermal configurations. Instead, we
consider a stochastic approach by including in the dislocation
motion, given by Eq. (3), random stress pulses that mimic, to
a first approximation, thermal agitations. Another source of
stochasticity in dislocation dynamics is the fluctuating local
strain field arising from random dislocation arrangements.
This approach has been applied to study the distribution
of stress fluctuations [19] and fractal dislocation patterning
during plastic deformations [25,26].

The purpose of this paper is to investigate the statistical
properties of equilibrium dislocation configurations in the
presence of thermal fluctuations. Thermal agitations arise from
random collisions of dislocations with surrounding particles,
such as phonons, and result in random forces acting on
dislocations. The stochastic version of Eq. (2) that we consider
is given by

η

b

dxi

dt
= b

∑
j �=i

τ (�ri − �rj ) + ξi(t), (3)

where the fluctuations are Gaussian distributed with zero mean
and variance,

〈ξi(t)ξj (t ′)〉 = 2kBT η

b2
δi,j δ(t − t ′), (4)

which depends on the effective temperature kBT and a
damping coefficient consistent with the fluctuation-dissipation
theorem. In particular, we study the distribution of velocities of
dislocations in a relaxed configuration and show that the cor-
responding power-law probability distribution function P (v)
is not necessarily a collective effect arising from avalanches
dynamics, nonequilibrium critical points, or self-organized
criticality; rather, it is a consequence of the functional form of
the stress in Eq. (1) and, in some cases, can be determined only
by considering the nearest-neighbor interaction. In other cases,
where the collective dynamics of dislocations has a significant

effect on P (v), this collective effect can be quantified by
considering the deviation of the exponent of the power-law
distribution of velocity from the one predicted using only
the nearest-neighbor interaction. In Sec. II, we show that
Eq. (3) in one dimension is the same as the equation of
motion for a two-dimensional (2D) Coulomb gas confined
in one dimension (1D). This system is sometimes known as
Dyson’s model and was first introduced to investigate the
statistical properties of energy levels of heavy nuclei [27]. We
find the probability distribution of velocity in Dyson’s model
and show that it follows a temperature-dependent power-law
distribution which can be predicted simply by considering the
nearest-neighbor interaction and thus is a consequence of the
logarithmic interaction energy.

The nearest-neighbor analysis in 2D is performed in Sec. III,
where we find a power-law distribution of velocities with an
exponent −2 independent of the effective temperature. We
show the presence of a phase transition analogous to the pairing
transition in a 1D plasma with logarithmic interaction [28] at
a temperature where the effective thermal energy becomes
equal to the mutual interaction energy scale μb3

2π(1−ν) . Above
this temperature, the dislocations are no longer bound to
their nearest neighbor in the long time limit. At temperatures
well below the transition temperature, we show that the
nearest-neighbor approximation is valid, and the probability
distribution of velocities of dislocations follows a power-law
with the exponent −2, while at temperatures comparable
with the transition temperature or above, the exponent of the
power-law distribution of velocity deviates from −2 and is
thus a presumptive indication of the collective dynamics of
dislocations.

II. VELOCITY DISTRIBUTION IN DYSON’S MODEL

In 1D, Eq. (1) for the internal stress simplifies to a 1/r force,
such that Eq. (3) reduces to the stochastic equation of motion
for a 2D Coulomb gas confined in 1D, which was first studied
by Dyson [27] to investigate the statistics of the energy levels
of heavy nuclei. Dyson’s model has also been used to model
a wide variety of phenomena in nuclear physics and other
fields, including random matrix theory [29,30], the theory of
orthogonal polynomials [31,32], and quantum transport theory
[29,33]. Since a system of Coulomb particles with the same
charge (in our case, dislocations with the same Burgers vector)
does not have a stable equilibrium, a uniform background of
opposite charge is added to the model through a parabolic
potential term, keeping the particles from flying off to infinity.

Here we work with a dimensionless spatial variable x̂ by
rescaling the length in units of the Burgers vector, x = bx̂,
and define a dimensionless time variable t̂ through t ≡ t̂ t0,
with t0 = 2π (1 − ν)η/(bμ). In these units and dropping the
hat symbol over the dimensionless variables, Eq. (3) with an
additional term −κxi , added to ensure the charge neutrality
condition, can be written as

dxi

dt
=

∑
j �=i

1

xi − xj

− κxi + ξi(t), (5)

which is the same as the equation of motion in Dyson’s
model [27]. The value of the dimensionless parameter κ
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is an indication of the strength of the parabolic potential
originating from the uniform opposite charge background, and
it introduces a new length scale in the problem. We show that
the addition of the parabolic potential does not influence the
power-law distribution of the velocity of dislocations and its
only function is to keep the system bounded. The variance of
the dimensionless fluctuations is then given by

〈ξi(t)ξj (t ′)〉 = 2σδij δ(t − t ′), (6)

where σ = 2π (1 − ν)kBT /(μb3), which is the ratio between
the effective thermal energy and the elastic interaction energy.
From Eq. (5), the Fokker-Plank equation for the joint probabil-
ity distribution of the positions of dislocations ρ(x1, . . . ,xN ,t)
follows as

∂ρ

∂t
= σ

∑
i

∂2ρ

∂x2
i

−
∑

i

∂

∂xi

⎡
⎣ρ

⎛
⎝∑

j �=i

1

xi − xj

− kxi

⎞
⎠

⎤
⎦ . (7)

The equilibrium configurational probability distribution is
determined from Eq. (7) and is given by [27]

ρ(x1, . . . ,xN ) ∝
⎛
⎝∏

i<j

|xi − xj |1/σ

⎞
⎠ exp

(
− κ

2σ

∑
i

x2
i

)
.

(8)

However, the exact probability distribution of particle ve-
locities in this system is very difficult to determine, due to
the nonlinear relationship between the xi’s and the vi’s in
Eq. (5). Nonetheless, we show that the velocity distribution
can be computed analytically in the limit where only the
nearest-neighbor interactions are dominant. This is done by
solving the system of two particles and comparing with the
numerical result for a simulated system of N = 100 particles.
The strength of the parabolic potential for the two-body system
is tuned to give the same average separation between the
particles as the one in the simulation.

Let the vector �x ≡ (x1,x2) be the position vector of two
particles and �v ≡ (v1,v2) be the deterministic part of the
velocity vector:

�v(�x) =
(

1

x1 − x2
− κx1,

1

x2 − x1
− κx2

)
. (9)

The joint probability distribution of velocities can be found by
the change of variables �x → �v in the probability distribution
of positions,

P (�v) =
∑
�x(�v)

ρ[�x(�v)]

∣∣∣∣∣
∂x1
∂v1

∂x1
∂v2

∂x2
∂v1

∂x2
∂v2

∣∣∣∣∣, (10)

where the summation is performed over all the positions �x
associated with the same velocity �v in Eq. (9). By inverting
Eq. (9) and substituting in Eq. (8), the joint probability
distribution of velocities P (�v) can be written as

P (�v) = C exp

(
w2

κσ

) ∑
+,−

1√
u2 + 8κ

(∓u +
√

u2 + 8κ)1+ 1
σ

× exp

(
−u2 ∓ u

√
u2 + 8κ

8κσ

)
, (11)

FIG. 1. Probability distribution of velocity of particles at σ =
1/2. The solid line is the result of numerical integration of (11) with
κ = 0.05. The circles are the data from the simulation of a system of
N = 100 particles with κ = 10−3.

where u = v1 − v2 and w = 1
2 (v1 + v2) are the relative and

center-of-mass velocities, respectively, and C is a normaliza-
tion constant. Equation (11) can be numerically integrated over
either v1 or v2 to obtain the probability distribution of velocity.
In Fig. 1, we compare the result of numerical integration of
Eq. (11) with the simulation of a system of N = 100 particles
at σ = 1

2 . In order to obtain the same transition velocity (the
velocity at which P (v) becomes a power law), κ was scaled
up by a factor of 50 to keep κN constant.

In the high velocity limit (either v1 → ∞ or v2 → ∞),
Eq. (11) scales as

P (�v) ∼ |u|−2−1/σ . (12)

We claim that almost all of the high velocity events result from
the pair interaction of two particles that are very close to each
other. Therefore, in this limit, v1 and v2 would be correlated
(v1 ∼ −v2), implying that P (v) also scales as

P (v) ∼ |v|−2−1/σ , (13)

where v = |v1| = |v2|. Figure 2 shows how the tail of the
probability distribution of velocities scales for different values
of σ . The exponent β = −2 − 1/σ is independent of κ as
expected. In fact, the same result can be obtained without the
parabolic potential, by calculating the probability distribution
for the velocity of a movable particle trapped in between two
fixed particles. In this case, to get the correct transition velocity,
the separation of two fixed particles should be set to twice
the most likely next-neighbor separation of particles obtained
from a many-body simulation. This is a clear indication that
the only effect of the background parabolic potential is to
keep the system bounded and that it does not affect the scaling
of the velocity distribution.

Given the functional form of the pair interaction (1/r force)
and the claim that high velocity events are consequences of
very close neighbor interactions, we can understand the power-
law tail of the velocity distribution through the following
scaling argument: Since r → 0 is a singular limit, for two
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FIG. 2. (Color online) High velocity tail of probability distri-
bution of velocities for σ ∈ { 1

4 , 1
3 , 1

2 ,1} for N = 100 particles with
κ = 10−3. The exponent of the power-law distribution agrees with
predicted values from Eq. (13).

very close particles, both the external force (the force from the
parabolic potential in this case) and the superposition of all
forces from other distant particles can be neglected compared
to the force of the closest particle. Therefore, v(r) scales as
v ∼ 1/r . Also, from Eq. (8), ρ(r) scales as ρ(r) ∼ r1/σ . Using

ρ(r)dr = P (v)dv, (14)

we have

P (v) ∼ ρ[r(v)]

∣∣∣∣dr

dv

∣∣∣∣ ∼ v−2−1/σ . (15)

It is important to confirm that ρ(r) ∼ r1/σ ; that is, we can
neglect the contribution of the interactions with other particles
in the scaling of the probability distribution separation of
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σ e

−κd2
2σ

FIG. 3. Probability distribution Pnn of the nearest-neighbor sep-
aration, d , for a system of N = 100 particles compared with the
distribution of relative distance in a two-body system.

a pair of particles with very small distance. Equivalently,
we need to confirm that the distribution of nearest-neighbor
separation is the same as the two-particle distribution in the
limit of small distance. Figure 3 compares the probability
distribution Pnn(d) of the nearest-neighbor separation, d, with
the distribution of relative distance in a two-body system.
Although the distribution at large separations behaves differ-
ently in the many-body system from the two-body system,
the small separation limits of both systems are essentially
identical.

From the simple argument above, it is clear that the
temperature-dependent power-law distribution of velocities in
1D is not a collective effect, and it is only a consequence
of the logarithmic interaction potential. The distribution of
velocities and the short distance limit of the distribution of
nearest-neighbor separations can be very well approximated
with those of the two-body system. The long distance limit of
the distribution of the nearest-neighbor separations is the only
quantity that cannot be predicted from the two-body analysis
(see Fig. 3).

III. TWO-DIMENSIONAL MODEL
AND PAIRING TRANSITION

A neutral system of dislocations with opposite charges in
1D is difficult to study without introducing ad-hoc rules of
pair creation and annihilation. Forrester has studied a 2D
generalization of Eq. (5) for a system with two opposite
charges and isotropic logarithmic interaction potential [34].
For nanocrystals with strong crystal anisotropy, the assumption
of straight edge dislocations with parallel Burgers vectors is a
good approximation, and, in this case, the motion is confined
to discrete, parallel glide lines. However, the dislocation
interaction is not a simple isotropic logarithmic potential, but
it obeys Eq. (1). We can generalize Dyson’s model with an
anisotropic interaction as following.

Consider a system of 2N particles (N of each charge) with
position vectors �r±

i = (x±
i ,y±

i ) (1 � i � N ), where y±
i ’s are

a set of 2N uniformly distributed random variables between 0
and L, and x±

i ’s satisfy the following equations of motion:

dx±
i

dt
=

∑
j �=i

τ (�r±
i − �r±

j ) −
∑

j

τ (�r±
i − �r∓

j ) +
√

2σξ±
i (t).

(16)

Here

τ (�r) = x(x2 − y2)

(x2 + y2)2
, (17)

and 〈ξ±
i (t)ξ±

j (t ′)〉 = δij δ(t − t ′).
Since the system is charge neutral, the term from the

parabolic potential is no longer necessary. We notice that
Eq. (17) can be derived from a potential of the form

V (�r) = − y2

|�r|2 − log(|�r|). (18)

The equilibrium joint probability distribution for the positions
of these particles is given by the generalization of Eq. (8) to a

042123-4



VELOCITY STATISTICS FOR INTERACTING EDGE . . . PHYSICAL REVIEW E 88, 042123 (2013)

neutral system of particles and has the following expression:

ρ(�r+
1 , . . . ,�r+

N ,�r−
1 , . . . ,�r−

N ) = 1

Z

∏
i<j |�r+

i − �r+
j | 1

σ exp
(

(y+
i −y+

j )2

σ |�r+
i −�r+

j |2
) ∏

n<m |�r−
n − �r−

m | 1
σ exp

(
(y−

n −y−
m )2

σ |�r−
n −�r−

m |2
)

∏
i,j |�r+

i − �r−
j | 1

σ exp
(

(y+
i −y−

j )2

σ |�r+
i −�r−

j |2
) , (19)

where the partition function is expressed as

Z = L2N

∫
d2Nr

∏
i<j |�r+

i − �r+
j | 1

σ exp
(

(y+
i −y+

j )2

σ |�r+
i −�r+

j |2
) ∏

n<m |�r−
n − �r−

m | 1
σ exp

(
(y−

n −y−
m )2

σ |�r−
n −�r−

m |2
)

∏
i,j |�r+

i − �r−
j | 1

σ exp
(

(y+
i −y−

j )2

σ |�r+
i −�r−

j |2
) . (20)

We show that the logarithmic term in Eq. (18) results in a
power-law velocity distribution for a system of two particles.
If the power-law distribution of velocities is a consequence
of the nearest-neighbor pair interaction, as was the case in
a 1D system with one charge, we should be able to predict
the exponent of the velocity distribution in a many-body
system by studying a system of two particles. However, if
the high velocity events are dominated by collective effects
such as avalanches, we should see different exponents in
the many-body simulation compared to the analysis of the
two-body system. We show that, in fact, the latter is true, and at
a nonzero temperature, the high velocity events are dominated
by collective interactions.

In contrast to the case of same-charge particles in 1D,
the opposite charges have attractive forces, and therefore,
the nearest neighbor of each particle is expected to have the
opposite charge for the majority of the time when the system
is at equilibrium. Consider a system of two opposite charges
moving on two parallel lines with separation y = y+ − y− and
relative longitudinal displacement x = x+ − x− obeying the
equation of motion

dx

dt
= −2

x(x2 − y2)

(x2 + y2)2
+

√
4σξ (t). (21)

This equation imposes a limit of vmax = 1
4y

on the absolute
value of the velocity of these particles. The absolute value of
velocity attains its maxima at x = ±(1 ± √

2)y.
Equation (21) is simplified through rescaling x by y. This

corresponds to the changes of variables x
y

→ x, t
y2 → t , and

yξ → ξ . Under these changes of variables, Eq. (21) becomes

dx

dt
= −2

x(x2 − 1)

(x2 + 1)2
+

√
4σξ (t), (22)

which is the same equation obtained by setting y = 1. From
Eqs. (19) and (20), we have

ρ(x) = 1

Z (x2 + 1)−
1

2σ exp

(
− 1

σ (x2 + 1)

)
(23)

and

Z =
∫ +∞

−∞
(x2 + 1)−

1
2σ exp

(
− 1

σ (x2 + 1)

)
dx. (24)

The integral above converges only for σ < 1, meaning that for
σ � 1, at equilibrium, the probability of finding the particles at
any finite separation is zero. At low temperatures, the particles

remain in a bound state at equilibrium. Above the critical
temperature σc = 1, the particles are no longer bound and fly
off to infinity in the long time limit. This is the analog of the
pairing transition in a 1D plasma with logarithmic interaction
with a short distance cutoff [28].

The probability distribution for the relative velocity of these
particles can be found using the change of variable

P (v) =
∑
x(v)

ρ[x(v)]

∣∣∣∣dx

dv

∣∣∣∣. (25)

Figure 4 shows the resulting velocity distribution calculated
from Eq. (25) for temperatures σ = 2

3 and 3
4 . The divergence

of P (v) at vmax is due to the singular change of variable
Jacobian | dx

dv
|. For σ > 1

2 , away from the maximum velocity,
corresponding to |x| � 1, P (v) decays as

P (v) ∼ v−2+1/σ . (26)

In this region, the system can be approximated by the 1D
system, and an argument similar to the one in the previous
section can be used to explain the scaling behavior of P (v). For
σ � 1/2, however, the x � 1 region has a finite contribution
in the low velocity limit [limv→0 P (v) is finite for σ � 1/2
in Eq. (26)], and therefore, the contributions of other zeros of
velocity near x = 0 become important. In this region, the low
velocity scaling of P (v) can be determined by considering the
contributions of all the competing terms from zeros of velocity
including both the ones near zero and the one at infinity in the
scaling argument.

P (v) calculated above is, in fact, the conditional probability
distribution for the velocity given the separation y = 1 or
P (v|y = 1). The relation

P (v|y) = yF (yv) (27)

can be obtained by a reverse change of variable to the original
x, y, and v, where F (v) = P (v|y = 1) is the distribution cal-
culated above. In order to calculate the probability distribution
for the velocity, independent of y,

P (v) =
∫ ∞

0
P (v|y)f (y)dy, (28)

the distribution of y, f (y), is needed. In the original many-
body problem, yi’s were chosen to be uniformly distributed.
However, the two-body problem that approximates the many-
body problem is constructed to represent a pair of nearest
neighbors in the many-body problem. Thus, fN (y) should be
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FIG. 4. (Color online) Relative velocity distribution calculated from Eq. (25) for temperatures σ ∈ { 2
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4 } compared with the predicted
power law in Eq. (26).

defined to be the probability distribution of the distance from
the nearest neighbor in an ensemble of N uniformly distributed
yi’s, 0 � yi � L = Nd, for some average separation d. In
other words, fN (y) is the probability of finding yi at any point
0 � s � L = dN , finding another yj at the distance y from
yi , and finding all the other yk’s outside of the interval (s −
y,s + y), given that the probability density of finding each yi

at each point in (0,L) is L−1 = (Nd)−1:

fN (y) =
∫ Nd

0
P (yi = s)

∑
j �=i

[
P (yj = s ± y)

×
∏
k �=i,j

(
1 −

∫ min{s+y,Nd}

max{s−y,0}
P (yk = x)dx

)]
ds

≈ Nd

(
1

Nd

)
(N − 1)

[
2

Nd

(
1 − 2y

Nd

)N−2]

= 2(N − 1)

Nd

(
1 − 2y

Nd

)N−2

. (29)

Now, f (y) can be defined as

f (y) = lim
N→∞

fN (y) = λe−λy, (30)

where λ = 2
d

. The limit of N → ∞ is taken by keeping d = L
N

constant. In order to perform the integral in Eq. (28), F (v)
was analytically calculated and numerically evaluated over
its range of definition and stored in an array. One hundred
million random numbers from an exponential distribution were
generated as y values, and at each v, P (v|y) was calculated
using Eq. (27) for all y’s, and it was summed over all y’s. The
resulting function P (v) then was normalized. Figure 5 shows
P (v) calculated for different values of σ . The low velocity
tail follows the scaling law for the low velocity tail of F (v)
discussed above, while the high velocity tail is independent of
σ and has the exponent β = −2.

Although the behavior of the low velocity tail can be
understood by the same scaling argument used in 1D system,
since the low velocity tail is heavily influenced by the long
distance behavior, the nearest-neighbor approximation does
not hold for this region. The high velocity tail of a the
two-body system, however, can be used as the nearest-neighbor
approximation for the many-body system. The −2 exponent
of the high velocity tail can be understood through a similar
argument, but this time, by expanding v(x) near its maxima, v

can be written near each of its maxima as

v ≈ vmax + ki(x − xi)
2, (31)
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FIG. 5. (Color online) Probability distribution of velocities in
ensembles of system of two particles confined in parallel lines with
exponentially distributed separations, y, for σ ∈ {0.1,0.5,1.0,1.5}.
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FIG. 6. (Color online) Probability distribution of velocities in a
system of 200 particles (N = 100) for σ ∈ {0.1,0.5,1.0,1.5}.

where ki = 1
2

∂2v
∂x2 |xi

and |v(xi)| = vmax. Thus, using Eq. (25),
near vmax, F (v) can be approximated as

F (v) ≈
(∑

i

ρ(xi)

ki

)
(vmax − v)−

1
2 . (32)

In other words, F (v) diverges as (vmax − v)−
1
2 in the limit that

v approaches vmax. It is important to note that the exponent
does not depend on the functional form of the interaction,
and this scaling holds as long as the interaction stress has a
nonsingular maximum at which its second derivative does not
vanish. Using Eq. (28), it is straightforward to see that the
−2 exponent of the high velocity tail can be obtained only by
considering the near maximum functional form F (v),

P (v) ∼
∫ vmax

v

0
y(vmax − yv)−

1
2 e−λydy ∼ v−2. (33)

Figure 6 shows the probability distribution for the velocity
in a simulation with 200 particles (N = 100). The weakly
temperature-dependent exponent β has the value −2 as
predicted from the nearest-neighbor analysis for σ � σc = 1,
while it has a smaller value for σ close to or larger than σc. This

deviation from the predicted exponent in the nearest-neighbor
approximation is an indication that the dislocation motion is
dominated by more than just the nearest-neighbor interactions.
The numerical exponent has the value β = −2.4 at the critical
temperature σc = 1, which is consistent with the exponent
found in externally driven systems at zero temperature [2].

IV. CONCLUSIONS

In this paper, we have studied the statistics of velocity
fluctuations in a simplified system of dislocations with parallel
Burgers vectors in 1D and 2D.

In 1D, the probability density function for the velocities
of the dislocations at high velocities scales as v−2−1/σ with a
power-law exponent that quantifies the strength of background
noise fluctuations relative to the pairwise interaction energy.
We have shown that this power-law distribution can be derived
by considering only the nearest-neighbor interactions of
dislocations and, therefore, is not a consequence of collective
interactions.

In 2D, at an effective temperature where the noise energy
kBT becomes equal to the pairwise interaction energy μb3

2π(1−ν) ,
we have found that there is a transition between a state at
which the nearest neighbors are bound to each other and a state
where they can escape from each other’s attractive force. For
temperatures significantly smaller than this transition temper-
ature, the velocity probability density function for dislocations
agrees with the scaling v−2 found from the nearest-neighbor
analysis, while for temperatures close to or larger than this
transition temperature, the probability density function follows
a power-law with an exponent steeper than −2, suggesting that
the high velocity events are dominated by collective effects due
to the interaction of more than two dislocations. This exponent
is very weakly temperature dependent and has a value of −2.4
at the transition temperature.

It remains to be further investigated how our results relate
to the velocity statistics in more complicated 3D models with
features such as junctions of dislocations and line tension
effects.
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