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A molecular dynamics calculation of the amino acid polar requirement is used to score the canonical genetic
code. Monte Carlo simulation shows that this computational polar requirement has been optimized by the
canonical genetic code, an order of magnitude more than any previously known measure, effectively ruling out
a vertical evolution dynamics. The sensitivity of the optimization to the precise metric used in code scoring is
consistent with code evolution having proceeded through the communal dynamics of statistical proteins using
horizontal gene transfer, as recently proposed. The extreme optimization of the genetic code therefore strongly
supports the idea that the genetic code evolved from a communal state of life prior to the last universal

common ancestor.
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I. INTRODUCTION

The genetic code is one of life’s most ancient and univer-
sal features [1,2]. It summarizes how RNA transcripts are
translated into amino acids to form proteins and is shared by
all known cells across the three domains of life with only a
very few minor variations [3,4]. Almost immediately after its
elucidation, attempts were made to explain the assignment of
codons to amino acids. It was noticed that amino acids with
related properties were grouped together, which would have
the effect of minimizing translation errors [5-7]. In order to
determine whether or not this was a genuine correlation or
simply a fluctuation reflecting the limited size of the codon
table, the canonical genetic code was compared to samples of
randomly generated synthetic codes, starting with early but
inconclusive Monte Carlo work of Alff-Steinberger [8], and
compellingly revisited with larger sample sizes by Haig and
Hurst [9]. Depending on the measure used to characterize or
score the sampled codes, high degrees of optimality have
been reported. For example, using an empirical measure of
amino acid differences referred to below as the “experimen-
tal polar requirement” (EPR) [10,11], Freeland and Hurst
[12] calculated that the genetic code is “one in a million”
[9,13]. More recently, it has been shown that when coupled
to known patterns of codon usage, the canonical code (and
the codon usage) is simultaneously optimized with respect to
point mutations and to the rapid termination of peptides that
are generated with frame shift errors [14].

These results are generally interpreted to imply that the
canonical genetic code had to have undergone a period of
evolution and was not simply a frozen accident [15,16].
While it was long assumed that code evolution would be
lethal, it has been recently shown how a genetic code can
evolve along with a dynamic refinement of the precision of
translation [17,18]. The results show clearly that vertically
dominated evolution is only capable of a relatively weak
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degree of optimization, failing to find global extrema, and
neither strongly optimized nor converged to a unique code.
On the other hand, only if the evolutionary dynamics is hori-
zontally dominated, with genes shared between organisms
(as is the case with contemporary microbes [19]), modularity
of structures such as the translation apparatus and the ge-
nome emerges naturally [20], and optimization is strong,
rapid, and convergent to a universal genetic code [18]. Thus,
the structure of the genetic code and translation apparatus
reflects the evolutionary dynamics from which the code
emerged. Although it is already clear that the code’s known
optimality strongly suggests that it did evolve, the dynamics
which dominated during its evolution has not yet so clearly
been determined. Thus, it is of essential interest to determine
accurately the extent of optimality of the canonical genetic
code because the greater the level of optimization the more
likely it is that the genetic code evolved when life was com-
munal in character.

The purpose of this Rapid Communication is to provide
two pieces of evidence for the collective evolution of the
genetic code. First, we set a lower bound on the level of
optimality of the canonical genetic code by using molecular
dynamics (MD) to construct a measure of code optimality,
the “computational polar requirement” (CPR) without any
input from experiment. We then use Monte Carlo simulation
to determine the level of code optimality and find that the
level is so high that a new and detailed error analysis is
required to ensure statistically significant assessment of very
small probabilities. Second, we explore the dependence of
our results on the scale of code variations. Our results indi-
cate a level of optimization that would only be attainable
from some form of collective dynamics [18] and a depen-
dence on scale that indicates that the dynamics involved the
refinement over evolutionary time of an ambiguous primitive
translation machinery. Ambiguous translation generates a
statistical ensemble of related proteins (“statistical proteins™)
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[7,21] rather than a unique protein, as is now the case, and is
exploited in the coevolutionary mechanism [17] of collective
code evolution [18].

II. MOLECULAR DYNAMICS OF THE POLAR
REQUIREMENT

The experimental polar requirement is a chromatographic
measure of amino acid affinity to a water-pyridine solution
that was originally motivated by a simple stereochemical
theory of the origin of the genetic code [7,10,11,22]. This
measure is related to and strongly correlated with several
other amino acid measures, such as hydrophobicity and
Grantham polarity [23]. In the EPR experiments, water/
dimethylpyridine (DMP) ratios ranging from 40-80 % mole
fraction water were used for chromatographic separations of
each amino acid measured. When the chromatographic fac-
tor, R,, was plotted as a function of mole fraction water in
log-log scale, a linear trend was observed for each amino
acid. The slope of the corresponding best fit line was taken to
be the amino acid’s EPR.

The methods used for obtaining the CPR numbers are
reported elsewhere [24] and are summarized here. The dis-
tribution of solute molecules across the water/DMP interface
is related to the equilibrium solvent environment surrounding
the molecules in a binary solution similar to that used in the
experiments. Trends in the local water density of a solvated
amino acid in water/DMP solutions were found to be linear
functions of mole fraction water. The slopes of these linear
trends were used to obtain a set of computed CPR values. To
quantitatively measure the differences in local solvent envi-
ronment, MD calculations were performed using NAMD2
software with a number, pressure, and temperature (NPT)
ensemble [25] and the CHARMM 27 force field [26,27]. Stan-
dard pressure and temperature were maintained for the simu-
lations. The systems consisted of a single amino acid mol-
ecule in a box of water and randomly placed DMP molecules
of a determined water/DMP ratio. For each amino acid at
least four systems, each with a different water/DMP ratio,
were simulated. Radial distribution functions (RDFs) of wa-
ter relative to the amino acid side chains were calculated
from the equilibrated MD trajectories using visual molecular
dynamics (VMD) [28]. The RDFs were calculated by a time
average over the equilibrated portion of a trajectory [29].

The most distant atom of the amino acid side chain was
used as a reference atom, and the oxygen or hydrogens (as
appropriate) from the water molecules were used as a selec-
tion in calculating the RDFs. Calculated in this manner, the
maximum value of the first peak in an RDF is related to the
relative density of water in the first solvation layer of the
amino acid side chain. It was found that these maxima varied
linearly with water/DMP ratios for each amino acid and that
the slopes of the corresponding lines were strongly corre-
lated with the EPR (R?>=0.92) (Fig. 1). We confirmed that
tyrosine’s large deviation from the experimental value was
not due to a weak signal in the RDF.

III. OPTIMALITY ANALYSIS OF THE CANONICAL
GENETIC CODE

To analyze the CPR, we used the point mutation code
analysis algorithms described in [9,12] along with an analyti-
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FIG. 1. Scatter plot showing the relationship between RDF peak
slope and experimental polar requirement for all amino acids. The
straight line is a guide to the eyes.

cal realization of bootstrap error analysis to assess the statis-
tical significance of the results. The algorithms treat the ge-
netic code as a mapping GC':Codons— Amino Acids,
where i indexes a particular set of assignments of codons
to amino acids and with GC' as the canonical code. Codons
is the set of codons excepting the termination codons,
and Amino Acids is the set of amino acids, i.e.,
GC'(UUU)=Phe. New versions GC'*! of the mapping are
generated by randomly permuting amino acid labels, leaving
termination codons fixed. This preserves the degeneracy
structure of the genetic code. The optimality of a given real-
ization of the genetic code GC' is assessed by evaluating the
sum

oj'= X

(c,c"y#Ter

W d![GC(e),GC(c")], (1)

where {c,c’) # Ter denotes a sum over the nearest-neighbor
codons with the nearest neighbors of a codon defined by its
single point mutations, with all mutations to or from a ter-
mination codon excluded. The matrix W, ., weighs transition
and transversion biases differently for different positions in
the codon according to a toy model of typical transversion
and transition biases in real translation. In our calculations,
we used the values from [12] as listed in Table I. Finally,
d9(x,y) is a metric on the space of amino acids. For the polar
requirement, the metric is taken to be d9(x,y)=|x—y|? over
the polar requirement values corresponding to the given
amino acids.

The appropriate quantity to compute is the probability
P,=Pr(0O>0,) that a random realization is more optimal
than the canonical code. To compute P;,, we count the num-
ber of randomly generated codes that are more optimal than
the canonical code and divide by the total number of random
codes generated. P, is invariant to uniform linear rescaling
of the amino acid polar requirement data and is smaller for
more optimal codes while including the effects of the large

TABLE I. The matrix W, ., of transition and transversion biases
taken from [12].

First base Second base Third base
Transitions 1 0.5 1
Transversions 0.5 0.1 1
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number of codes that can be explored rather than the simple
linear scale provided by the bare optimality score.

The error in the computed P, can be estimated using an
analytical realization of bootstrap resampling. Simulated data
sets for bootstrap are created by randomly sampling optimal-
ity scores from the original data set. When the samples are
drawn from the original set, there are only two alternatives: a
more or less optimal code can be sampled with the probabil-
ity Pp=No>0,/ N of drawing a random code better than
the canonical code. Since the number of better codes in a
sample is the number whose error we wish to estimate, we
can regard drawing a better code as a step to the right with
probability P, in a one-dimensional random walk. The
known formulas for the asymmetric one-dimensional random
walk allow us to compute the bootstrap error estimate in the
limit of infinitely many resampled sets, i.e., the exact boot-
strap estimate. For metrics under which P,<<1 holds, we
obtain the variance in P, to be

N0>01] _P(1=Py) _ No=o, )

2
Ntotal N,

total

varP,] = varl

total
To obtain a reasonable estimate of error or to compare the
results of different metrics on the space of amino acids, the
number of more optimal codes N,-, from the random
sample must be sufficiently large ( No=0,<No=g, or about
No=0,=10 as a reasonable minimum).

When  the  computational  polar  requirement
difference squared is used in the amino acid metric P,
=(19+4.36) X 1078, In contrast, with the experimental polar
requirement, P,=(26.5+1.63) X 1077, an order of magnitude
improvement. To assess the impact of tyrosine (which had
the largest variation between the CPR and EPR values) on
these results, we redid the calculation of P, for the CPR but
with tyrosine replaced with the value from the EPR. The
result is [P,=(9.3+ 1.0) X 107]. To test the sensitivity of the
results for the CPR, we varied each element of W, . inde-
pendently by =0.1 X W, ., and repeated the calculation of
P,. This led to the results that were statistically indistin-
guishable from the results reported above. Shorter computa-
tions (justified by the faster convergence due to decreased
optimality) for the EPR indicate a similar level of robustness.
With a W, ., uniform among nearest neighbors we saw sub-
stantial increases in P, in agreement with [9]. However, the
CPR continued to be superior to the EPR, with the CPR
yielding P,=(3.7%.61)X 107> and the EPR yielding
P,=(11.8*+1.1)x 107,

Varying the value of ¢ in the metric [30] provides a fur-
ther probe to explore the optimization of the genetic code.
Increasing the value of g is equivalent to emphasizing the
role of larger and larger differences between the amino acid
intended and the one generated by point mutation. Thus, if
P, reduces for increased values of g, the code (along with
W. ) evolved to suppress the effects of rarer, possibly cata-
strophic errors that may be generated by point mutations.
This may happen primarily by evolving small elements of
W. ., where c— ¢’ is catastrophic or vice versa. Conversely,
if P, reduces for smaller values of ¢, the code evolved to
both mitigate the possibility of these catastrophic errors and
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FIG. 2. P, as a function of the exponent g in the amino acid
metric.

to minimize the effects of frequent small errors. Varying g
we find that the canonical genetic code is most optimal for g
between one and two with significant increases outside this
regime in either direction (Fig. 2). This indicates that the
genetic code is optimized for minimizing errors according to
their size with no undue emphasis to larger or smaller errors.
Given the relative weakness of the code when emphasizing
large errors, the evolution must have favored organisms that
discarded or edited fatally flawed proteins over evolving the
code to make them less likely at the cost of reducing its
ability to minimize the more frequent moderate and minor
errors. The weakness of the canonical code when minor er-
rors are emphasized (¢ <1) suggests that while the code was
still evolving minor errors were on the whole less important
biologically as would be expected in evolutionary dynamics
[17,18] that utilized ambiguity tolerance in early proteins
[7.21].

IV. OPTIMALITY ANALYSIS OF ALTERNATIVE CODES
AND MEASURES

A selection of variant codes was also analyzed using the
CPR. Our findings, displayed in Table II, were consistent
with the previous findings of Knight [13] in that the alterna-
tive codes did not show marked improvements in optimality
over the canonical code. This is consistent with our expecta-
tion that evolutionary pressure to optimize the code with
respect to the polar requirement was eased after the last uni-
versal ancestral state.

TABLE II. P, for several naturally occurring variant codes.

Code P,

(19+4.36) x 1078
(11+3.32)x 1078
(21+4.58)x 1078
(583+24.15)x 1078
(51%+7.14)x 1078

Canonical

Yeast mitochondrial

CDH nuclear code
Ascidian mitochondrial
Echinoderm mitochondrial
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We also tested Grantham polarity [23], which has been
argued in a survey of genetic code optimality under different
amino acid measures to be the amino acid measure most
optimized by the genetic code [13]. The results yield
P,=(285+16.88) X 10~® or an order of magnitude higher
than with the CPR metric, leading to the conclusion that the
CPR is the most effective known metric for optimization of
the genetic code. Previous computations evaluated P, by
generating 100 000 random codes [13]. Scaling our results to
the size of these original simulations, we see that the EPR
and the Grantham polarity have virtually identical scores.
Scaling the errors for the CPR and the Grantham polarity to
errors assessed from only 100 000 codes, we get for the
CPR, P,=(0.19 +0.44) X 107> and for the Grantham polarity,
P,=(2.85*1.69) X 107>, These results are within a standard
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deviation and a half of each other and are therefore not dif-
ferent in a statistically meaningful way.

In conclusion, earlier estimates of code optimality were
understated by a statistically significant amount. The extent
of optimality and its dependence on metric revealed here
further support the notion that the genetic code must have
evolved during an early communal state of life [18].
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