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I present empirical evidence that turbulent flows are closely analogous to critical phenomena, from a
reanalysis of friction factor measurements in rough pipes. The data collapse found here corresponds to
Widom scaling near critical points, and implies that a full understanding of turbulence requires explicit
accounting for boundary roughness.
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Turbulent phenomena in fluids [1] are characterized by
strong fluctuations and power-law spectra [2] that are
suggestive [3] of the power-law correlations observed in
critical phenomena at continuous phase transitions [4].
Attempts to link these two sets of phenomena have primar-
ily, but not exclusively [5,6], focused on the calculation of
scaling exponents [7] in ideal systems that are isotropic and
homogeneous, neglecting boundaries. However, no ana-
logue has been found for the wide variety of thermo-
dynamic scaling phenomena [8] that are an equally funda-
mental aspect of continuous phase transitions, and whose
elucidation [9] led to a complete understanding of critical
phenomena [10]. Here we consider the important role
of boundary roughness on fluid flow, by reanalyzing
Nikuradze’s experimental measurements [11] of the fric-
tion exerted on a turbulent fluid by the walls of a rough
pipe. We show that the data as a function of Reynolds
number and relative roughness collapse onto one universal
curve, when appropriately scaled. This analogue of Widom
scaling [8] implies that boundary roughness must be in-
cluded in a complete description of turbulence, and estab-
lishes the long sought-after precise connection to critical
phenomena.

Turbulent flows are characterized by their Reynolds
number, defined as Re � UL=�, where U is a typical
velocity at the length scale L, and �, the kinematic vis-
cosity, is the viscosity of the fluid divided by its density. In
1941, Kolmogorov [12] and Obukhov [13] recognized that
at large enough Reynolds numbers, fluid motion is, over a
wide range of length scales, a dynamical, energy-
conserving but irregular swirling motion [1] governed by
inertia, rather than a dissipative phenomenon. Thus, they
pointed out that for this so-called inertial range of scales,
observables should be independent of �. In particular, for
the inertial range, the turbulent energy spectrum E of
longitudinal velocity fluctuations �vk in wave number
space, k, can depend only upon the mean energy transfer
rate �� and k itself in a manner dictated by dimensional
analysis: E�k� � hj�vkj2i � ��k�5=3. This experimentally
verified [14] power-law scaling (often referred to as K41)
applies on small scales in a turbulent flow, but not so small
that molecular viscosity becomes important. The existence

of a wide range of length scales, over which power-law
(and thus scale-invariant) correlated fluctuations are found,
is reminiscent [3] of the power-law fluctuations on many
length scales that accompany critical phenomena [4]: for
example, in a ferromagnet near its critical point, the
Fourier component of the magnetization M at wave num-
ber k satisfies G�k� � hjMkj

2i / k�2��, where � is an
anomalous scaling exponent that describes departures
from mean field theory. This power-law scaling applies at
large scales, and is independent of the small scale details of
the system, such as the nature of the crystal lattice.

Power-law scaling of correlation functions is, however,
only one of two key aspects of critical phenomena [4]. The
other, equally important aspect is the phenomenon of data
collapse, or Widom scaling [8]: for example, in a ferro-
magnet, the equation of state, nominally a function of two
variables, is expressible in terms of a single reduced vari-
able that depends on a combination of external field and
temperature. What is the turbulent analogue to Widom
scaling in thermodynamics? To address this question, it is
necessary to examine data on the large-scale properties of
turbulence, for example, the friction factor in pipe flow.

In 1932 and 1933, Nikuradze undertook a seminal series
of measurements of flow in nominally smooth [15] and
rough pipes [11], measuring inter alia the friction factor f,
related to the pressure drop across the pipe [16,17]. These
measurements have remained the benchmark in the field,
being the only systematic measurements of a single flow
geometry over such a wide range of Reynolds numbers.
Nikuradze’s experiments on sand-roughened pipes used
sand grains of a well-defined size r, repeated over a wide
range of values of r and pipes of different radii D.
Nikuradze was able to verify the expectation of hydro-
dynamic similarity: the flow properties depend on the
roughness only through the combination r=D. Nikuradze
presented results for the shear force per unit area � exerted
by the flow on the walls of the pipe in the form f � �=�U2,
and these data are plotted in Fig. 1.

There are several broad features to note in these data.
First, in the smoothest pipes studied, for Re< 100 000, in
the turbulent regime, the friction factor is a decreasing
function of Re, varying to a good approximation in a
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manner usually attributed to Blasius [18,19] as f�
Re�1=4. As the roughness scale is increased, and thus for
smaller values of D=r, the extent over which the Blasius
scaling extends becomes smaller. Thus, we can represent
this feature by the statement that f� Re�1=4 asymptoti-
cally as r=D! 0. Asymptotically for rough pipes at large
Re, the friction becomes independent of Re, and depends
only on the roughness r=D, varying to a good approxima-
tion, according to Strickler’s law [20], as f� �r=D�1=3.
These broad characteristics are also visible in aggregate in
other pipe flow data [21–25], but no other single data set
captures the full range shown here, with as little scatter
evident in the data.

These features place strong constraints on the functional
form of the friction factor f�Re; r=D�. In fact, these con-
straints precisely parallel those on thermodynamic proper-
ties of ferromagnets near the critical temperature Tc, as a
function of reduced temperature t � jT � Tcj=Tc and ex-
ternal magnetic field H. For example, at the critical tem-
perature, the magnetic equation of state has the form
M�H1=� for t � 0, where � is a critical exponent whose
value can be computed by renormalization group (RG)
theory [4]; and for zero field, the magnetization continu-
ously approaches zero as T ! T�c with a power-law varia-
tion M� t� for H � 0, where � is another critical
exponent whose value can be computed by RG. Widom
[8] discovered that these properties all followed if the
thermodynamic free energy obeyed certain scaling proper-
ties, later shown to follow from renormalization group
considerations [9,10].

We connect scaling in turbulence with that in critical
phenomena by observing that the limit Re! 1 is analo-
gous to the limit t�1 ! 1, whereas the limit H ! 0 is

analogous to the limit r=D! 0. Thus, the analytic prop-
erties of the friction factor can be derived if we follow
Widom’s scaling argument [8], and propose a scaling form
for the friction factor: f�Re; r=D� � Re�1=4g�Re�r=D�,
where g�z� is an unknown scaling function of a single
variable z, which tends to a constant for small values of
z, and � is an exponent that we can determine by the
requirement that the Re dependence should cancel out of
the formula for f at large Re, leaving the Strickler law f�
�r=D�1=3. This requires that g�z� � z1=3 as z! 1, and
therefore �=3 � 1=4. Thus, we conclude that

f � Re�1=4g�Re3=4�r=D��: (1)

The scaling form of Eq. (1) predicts that the turbulent
friction factor data, measured as a function of both r=D and
Re, and thus in principle occupying a two-dimensional
space, will actually collapse onto a one-dimensional curve,
when plotted as fRe1=4 versus �r=D�Re3=4. The test of this
prediction is shown in Fig. 2, where Nikuradze’s data
occupying the plane of Fig. 1 collapses onto a single curve
when plotted in the reduced variables of Eq. (1). Note that
the data collapse occurs for those data that lie between the
Blasius and Strickler regimes only. Small deviations from
the data collapse are visible, but it is not clear to what
extent these reflect uncertainties in the data [26] or some-
thing more fundamental.

The scaling function that we have extracted from the
data is unlikely to be universal in the sense of being
independent of the nature of the roughness of the pipe.
By analogy with the effects of long-range interactions in
critical spin systems [4], it seems probable that self-affine
roughness [25] will have a different effect on the flow than
periodic single-scale roughness, and this can be reflected in
the scaling function, the scaling exponents, or both.
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FIG. 2 (color online). Friction factor for turbulent flow in a
rough pipe, as reported by Nikuradze [11], scaled according to
the text. Inset: the same plot on a logarithmic scale.

2.5 3 3.5 4 4.5 5 5.5 6 6.5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

log
10

 Re

lo
g 10

 f

D/r=507

D/r=252

D/r=126

D/r=60

D/r=30.6

D/r=15

FIG. 1 (color online). Friction factor for turbulent flow in a
rough pipe, as reported by Nikuradze [11]. The data were
measured at different values of Re and r=D, and extracted
from Nikuradze’s tabular and graphical presentation.
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Inspection of the data from different pipe flow experiments
suggests that the first possibility is the most likely, but this
remains to be checked in detail.

The interpretation of the analogy discovered here is
very natural. In magnetic systems, for example, the
power-law scaling of G�k� is now understood to be asso-
ciated with the fact that magnetization can be induced in a
magnet by the application of an external magnetic field H.
The sensitivity of the order in a magnet to a perturbation by
H becomes exquisite near a critical point, and thermody-
namic variables contain a singular dependence on H and t.
The fact that the boundary roughness plays the role of
external magnetic field is a reflection of the fact that small
perturbations couple to the flow and drive the turbulent
state.

The exponents in the scaling theory given here are taken
from experiment; however, Gioia and Chakraborty have
recently pointed out [27] that the friction factor f can be
related to the local structure of turbulence, by considering
the momentum flux at the pipe boundary. The Nikuradze
data show four features: a hump, the Blasius regime, a
shallow minimum, and the Strickler regime. The scaling
argument presented here implies that the Blasius and
Strickler regimes are both manifestations of inertial range
scaling coupled with wall friction, and, indeed, Gioia and
Chakraborty find from momentum flux considerations that
this is sufficient to reproduce the Blasius and Strickler
regimes. If they then include the dissipation range in their
formula for the friction factor, they find that this reprodu-
ces the shallow minimum between the Blasius and
Strickler regime. Interestingly their formulas for the pure
inertial and the inertial plus dissipation ranges both satisfy
Eq. (1). The hump in the friction factor arises from the
energy-containing range, lies outside the range bracketed
by Blasius and Strickler, and is absent from their predic-
tions if this spectral feature is not included in their formula.
Thus, in summary, the features that are described by Eq. (1)
are, indeed, related to the spectral features of the inertial
range (and the dissipation range). Thus, just as in critical
phenomena, the large-scale phenomenology of turbulence
can be related to the power-law fluctuations. Presumably,
the scaling result Eq. (1) can be derived from a renormal-
ization group argument [9].

Equation (1) describes the nonequilibrium driven steady
state of fully developed turbulence, which is to be con-
trasted with the phenomenon of the transition from laminar
to turbulent flow. In the case of turbulent pipe flow, it is
generally accepted that laminar Hagen-Poiseuille flow is
linearly stable at all Reynolds numbers and that there is a
finite amplitude instability to turbulence [28,29], whose
amplitude varies [30] as Re�1. Thus, this transition has the
character of a first order transition in thermodynamics and
is not related to the theory given here.

Our results establish boundary roughness as a key ele-
ment in a proper theoretical description of turbulence, in

the same way that a proper understanding of the ferromag-
netic critical point at zero field would not be possible
without taking into account the behavior for nonzero val-
ues of H. Our analysis highlights the need for a definitive
set of experiments to replicate Nikuradze’s data set, with a
view to greater precision and removing sources of uncer-
tainty [26] in both the data set and in the widely used
Colebrook [24] semiempirical fit [31]. In ongoing work
we are exploring the effects of roughness in two-
dimensional turbulence [32], where predictions for the
analogues of the Blasius and Strickler laws reveal interest-
ing differences from the three-dimensional results.
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