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We derive a set of rotationally covariant amplitude equations for use in multiscale simulation of the two-
dimensional phase-field crystal model by a variety of renormalization-group �RG� methods. We show that the
presence of a conservation law introduces an ambiguity in operator ordering in the RG procedure, which we
show how to resolve. We compare our analysis with standard multiple-scale techniques, where identical results
can be obtained with greater labor, by going to sixth order in perturbation theory, and by assuming the correct
scaling of space and time.
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I. INTRODUCTION

A fundamental theoretical and computational challenge in
materials modeling is that of simultaneously capturing dy-
namics occurring over a wide range of length and time
scales, under processing conditions. A classic example of
such a multiscale problem is dendritic growth, a phenom-
enon seen in the solidification of undercooled melts, which
involves the capillary length �10−9 m, the scale of the pat-
tern �10−6 m, and the diffusion length �10−4 m, which to-
gether span length scales over five orders of magnitude, and
heat and solute transport through diffusion which occurs on
time scales of �10−3 s. Only recently, after considerable ad-
vances in computing technology, and through the use of so-
phisticated computational techniques �1–3�, has this problem
become tractable in three dimensions. Although a number of
computational approaches �4,5� including quasicontinuum
methods �6–9�, the heterogeneous multiscale method �10,11�,
multiscale molecular dynamics �12–15�, multigrid variants
�16�, and extensions of the phase-field model �17� have been
proposed, they all appear to have significant limitations. De-
veloping a “handshake” algorithm, to seamlessly integrate
the transition between scales, is a common problem. Also,
most models appear to be capable of handling only a limited
number of crystallographic orientations, with a few isolated
defects.

Elder et al. �18,19� recently proposed a continuum, non-
linear partial differential equation, which they called the
phase-field crystal �PFC� model, for realistically describing
materials processing phenomena in polycrystalline materials.
The PFC equation describes the evolution of the time-
averaged density field in the material, subjected to the essen-
tial constraint of mass conservation. While averaging the
density makes it possible for the model to capture phenom-
ena over diffusive time scales �not possible with molecular
dynamics�, the spatially periodic variations, with a wave-
length on the order of the interatomic spacing, allow it to
incorporate lattice defects such as vacancies. These rapid
spatial variations, however, are also the bane of the model, as
they necessitate the use of a uniformly fine computational
mesh whose grid spacing approaches the interatomic separa-

tion. Thus the PFC model is computationally expensive for
mesoscale problems �such as dendritic growth�, although still
considerably better than a molecular dynamics calculation.

We have recently described a theoretical approach to this
difficulty �20,21�, presenting a heuristic renormalization-
group �RG� �22� method to coarse-grain the PFC equation
and obtain equations of motion for the amplitude and phase
of the periodic density field. Using these variables, it is pos-
sible to reconstruct the original field to a certain order of
approximation. The main advantage of such a description is
that the amplitude and phase of the density field vary on
length scales much larger in comparison to those of the field
itself, which enables us to use a coarser mesh to speed up
calculations �see �20� for details on accuracy and speedup�.
Furthermore, the relative uniformity of these variables per-
mits solution of the equations governing them on an adaptive
grid which, we anticipate, will further improve computa-
tional efficiency. We emphasize that the RG procedure is
more than a naive coarse graining in real space of the den-
sity, because it uses the dynamics inherent in the underlying
equation to project out the long-wavelength, small-frequency
behavior. The essential effect of this distinction is that valu-
able aspects of the phase-field crystal model, such as its na-
tive inclusion of elasticity, are preserved. In �20,21� we veri-
fied explicitly, by numerical calculation, how the RG
equations are able to accomplish this, and thus are suitable
for dealing with polycrystalline systems.

The main purpose of the present paper is to present full
details of the systematic calculation to derive such coarse-
grained equations from the PFC equation. A secondary goal
is to compare and contrast the variety of techniques that are
available to derive coarse-grained equations of motion. A
rather surprising finding of our work was that when we fol-
lowed naively the “cookbook recipe” for each method, our
results were not identical, with the RG methods yielding a
form of the amplitude equation slightly different from that
derived by the classical method of multiple scales. The PFC
equation obeys a local conservation law, and while this by
itself can lead to a variety of interesting features �23�, it also
brings to the fore an ambiguity with the usual implementa-
tion of the renormalization procedure, something that is not
unique to conservation laws. This ambiguity is essentially an
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operator ordering one, and can be remedied in a straightfor-
ward way. Once done, all methods yield the same amplitude
equation, even though the technical details are quite distinct
in the different methods. As a pedagogical exercise, we
present the analysis for the Van der Pol oscillator in the Ap-
pendix, once again obtaining consistent results from all
methods when using the approach described herein. Our
main conclusion is that the renormalization-group method is
still considerably easier to implement than competing ap-
proaches, and in particular requires no knowledge of the
scaling relationship between space and time while achieving
full rotational covariance at lowest order in perturbation
theory.

In the remainder of this introduction, we review the main
conceptual developments leading up to the techniques de-
scribed in this paper. It is now relatively standard in nonlin-
ear pattern formation problems to use amplitude equations to
uncover universal features of pattern forming systems. The
formalism, first introduced by Newell, Whitehead, and Segel
�NWS� �24,25� to describe periodic patterns in Rayleigh-
Bénard convection, offers a way to extract the spatiotempo-
ral envelope of these patterns, which then allows one to pre-
dict the dynamics qualitatively with very little information
about microscopic details. Unfortunately, however, the NWS
equation, as originally constructed, can only describe the dy-
namics of patterns oriented along the same fixed direction,
everywhere in space, whereas physical systems often pro-
duce complex mosaics of patterns with no particular orienta-
tional preference. Such mosaics arise in real systems which
are invariant under rotations, and hence any equation which
is used to study them must also have the crucial property of
rotational covariance, something that is lacking in the NWS
equation. Equations with an orientational bias can be very
difficult to implement numerically, especially on systems
with arbitrarily oriented patterns. Nevertheless, the NWS
equation embodies the important notion of coarse graining,
which has played a significant role in shaping the modern
day theory of pattern formation �26�, and also forms the basis
of our approach to multiscale modeling with the PFC equa-
tion.

Gunaratne et al. �27� first derived a rotationally covariant
form of the NWS equation using the method of multiple
scales �28–31�, where they assumed isotropic scaling of the
spatial variables. They showed that the spatial operator in the
NWS equation could be symmetrized, by systematically ex-
tending the calculation to higher orders in the perturbation
parameter �, the reduced Rayleigh number. They explained
that the finite truncation of the perturbation series destroyed
the rotational symmetry of the operator, which could, how-
ever, be recovered at a higher order. Another important con-
clusion of their work was that the qualitative behavior of
pattern formation remained unchanged if one ignored higher-
order corrections, provided the equation itself was rotation-
ally covariant. A drawback of their calculation, however, was
�as with any application of the method of multiple scales� the
need to guess a priori the correct scaling of space-time vari-
ables. In addition, their calculation required gradual accumu-
lation of operators and terms up to O��4�, before a rotation-
ally covariant equation emerged.

A more systematic approach emerged shortly after. Chen
et al. showed how to perform reductive perturbation theory

using RG methods �32�, and obtained the NWS equation for
the Swift-Hohenberg equation �33� by renormalizing the
leading secular divergences at each order. Graham �34� sub-
sequently showed that, in fact, this method gave the fully
rotational covariant equations, if all secular terms are renor-
malized and a careful choice of operator splitting is used.
Calculations involving the RG typically produce elegant and
accurate uniformly valid approximations for ordinary differ-
ential equations �ODEs�, starting from simple perturbation
series where no knowledge of the scaling present in the sys-
tem is exercised �32�. For partial differential equations
�PDEs�, the same approach is successful, but generates a
tedious number of perturbation terms at higher orders. This
difficulty arises from the need to explicitly construct secular
solutions of the highest possible order, at every order in �,
and from a practical standpoint equals �if not outweighs� the
advantage of requiring no prior insight into the problem. For
this reason, calculations employing this method for PDEs
have rarely gone beyond O���. The key advantage of the RG
method, however, is that when carefully performed, the cal-
culation yields a rotationally covariant amplitude equation at
a much lower order in � compared to the method of multiple
scales, as was shown by Graham �34�.

Nozaki et al. �35,36� have developed a more abstract ver-
sion of the perturbative RG for weakly nonlinear PDEs,
called the “proto-RG” scheme. They argue that if one is will-
ing to sacrifice some of the purely mechanical aspects of the
conventional RG by taking cognizance of the system’s prop-
erties, such as those exhibited by the governing differential
equation, one can obtain a rotationally covariant amplitude
equation to O��� without having to construct any secular
solutions. By computing minimal particular solutions, usu-
ally obtained by a straightforward inspection, one can even
obtain O��2� corrections with only a little more algebra. They
illustrated the relative simplicity of this method by deriving
the rotationally covariant form of the NWS equation to
O��2�, as previously derived by Gunaratne et al. �27�. Shiwa
�37� further demonstrated the efficacy of this scheme by ob-
taining the well-known Cross-Newell phase equation
�38,39�, which describes phase dynamics of patterns gener-
ated by the Swift-Hohenberg equation. A drawback of this
approach is in the selection of the so-called proto-RG opera-
tor, which turns out to be nonunique in general. Nozaki et al.
show, however, that the operator is uniquely specified, pro-
vided we insist on the lowest-order differential operator pos-
sible.

As the reader will have no doubt realized from this syn-
opsis, several methods and variants exist for deriving enve-
lope equations from order parameter equations �OPEs� that
produce predominantly periodic patterns. Although one may
argue that some of these methods are essentially variants of
perturbative RG theory for PDEs, they are structurally very
different. It is thus a very instructive exercise to compare the
defining properties of each of these methods in the context of
a single microscopic OPE. We present such a detailed study
in this paper using the PFC equation, which unlike the Swift-
Hohenberg model, has not been extensively studied.

The paper is organized as follows. To set the context for
our work, we briefly introduce the PFC model in Sec. II. In
Sec. III we present a detailed derivation of an amplitude
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equation from the PFC model using a heuristic approach. In
Sec. IV, we use the proto-RG method to derive the amplitude
equation more systematically. We attempt to verify these cal-
culations independently in Sec. V using the method of mul-
tiple scales. A one-dimensional �1D� derivation via the con-
ventional RG method is presented for completeness in Sec.
VI. We find that while the proto-RG and RG results are con-
sistent, they do not agree with the other calculations, due to
an operator ordering ambiguity not previously noticed. We
remedy this in Sec. VII, and conclude with some remarks in
Sec. VIII.

II. THE PHASE-FIELD CRYSTAL EQUATION

The phase-field crystal model proposes a sixth-order non-
linear partial differential equation for describing the space-
time evolution of the time-averaged, conserved density vari-
able ��x , t�, of a material. As has been shown �18,19�, this
equation has the potential to accurately model a variety of
key materials processing phenomena, including heteroge-
neous nucleation and grain growth, liquid phase epitaxial
growth, ductile fracture mechanics, dislocation mechanics
�40�, and plasticity. An important feature that differentiates it
from another popular continuum material model, the phase-
field model �17�, is its incorporation of elasticity in the free-
energy functional through terms that guarantee gradients in
the equilibrium density field, for certain values of the control
parameters. Crucial to the construction of this free energy, is
the observation that elasticity is a natural property of a sys-
tem which is characterized by periodic fields. We refer the
reader to the exhaustive article by Elder and Grant �19� for a
detailed description of the model and its applications.

From the point of view of pattern formation theory, the
PFC equation is the conserved analog of the simplest form of
the Swift-Hohenberg equation �with only the cubic nonlin-
earity�, and is written as

�t� = �2���1 + �2�2 − ��� + �3� + � . �1�

Here, � is the scaled undercooling, a parameter akin to the
modified Rayleigh number, controlling the stability of the

uniform phase �̄ �liquid� to the appearance of either a peri-
odic striped phase or a periodic hexagonal phase �both crys-
talline solids�, and � is the conserved Gaussian noise which
accounts for thermal fluctuations in the system. A phase dia-
gram illustrating the phase boundaries and coexistence

curves in �− �̄ space is given in �19�.
For present purposes we will concern ourselves only with

the uniform to hexagonal phase transition �but we are not in
any way restricted to it�, and will disregard � in view of its
relative unimportance in describing phase transition kinetics.
In a single-mode approximation, a hexagonal pattern is de-
scribed by

��x,t� = �
j=1

3

Aj�t�eikj·x + �̄ + c.c., �2�

where k1=k0�−i�	3/2− j� /2�, k2=k0j� and k3=k0�i�	3/2− j� /2�
are the reciprocal lattice vectors, k0 is the wave number of

the pattern, i� and j� are unit vectors in the x and y directions,
Aj are the complex amplitude functions, and c.c. denotes the
complex conjugate. We point out that a striped pattern, with
the stripes parallel to the x axis, can be represented by the
same equation above with A1=A3=0 and A2�0. As shown
in Fig. 1 however, the PFC equation describes the evolution
of several such hexagonally patterned crystals of arbitrary
orientation, that collide to form grain boundaries. While the
pattern remains periodic within each crystal, there is a break
in the periodicity across the boundaries. Equation �2� can be
made to describe such a system by allowing the Aj to be
spatially varying, i.e., Aj�x , t�. Our goal is then to derive
evolution equations for Aj�x , t�, which along with Eq. �2� can
be used to reconstruct ��x , t� in a one-mode approximation.
Note that Aj�x , t� now contains information about both the
envelope function �amplitude modulus� as well as the orien-
tation �phase angle� of each grain, but varies on a much
larger length scale.

In order to proceed with our analysis, which is essentially
perturbative, we identify � as a small parameter, in powers of
which we shall expand � about the steady-state solution. We
point out that the PFC model stipulates no such restrictions
on the value of �, other than ��0, whereas it is natural to
expect our treatment to restrict the validity of the amplitude
equations so derived to small values of ��1.

III. HEURISTIC RG CALCULATION

We now present a derivation of the amplitude equation
from Eq. �1� using linear stability analysis and a shortcut
motivated by experience. An idea along these lines was pre-
viously implemented by Bestehorn and Haken �41� to derive
an OPE �similar to the Swift-Hohenberg equation� for mod-
eling traveling waves and pulses in two-dimensional sys-
tems, but not for deriving amplitude equations.

We pose Eq. �1� in a more convenient form by scaling �
by 	�, and calling this new variable �. In this manner, Eq.
�1� becomes

�t� = �2�1 + �2�2� + ��2��3 − �� . �3�

Let us now consider the stability of the uniform phase solu-

tion �̄ to the formation of the hexagonal pattern by adding to

it a small perturbation �̃, so that �= �̄+ �̃. Substituting in Eq.

�3� and linearizing about �̄ we obtain

�t�̃ = �2���3�̄2 − 1� + �1 + �2�2��̃ . �4�

If �̃ is a hexagonal instability in the form given by the spa-
tially dependent part of Eq. �2�, then using Aj�t�
=A0jexp�� jt�, where A0j are complex constants, and substi-
tuting in Eq. �4�, we obtain the discrete dispersion relation

� j = − 
k j
2���3�̄2 − 1� + �1 − 
k j
2�2� , �5�

after applying orthogonality conditions. Here � j predicts the
growth or decay rate of a hexagonal instability in the spa-

tially uniform system. Note that for real values of �̄, � j is
always real. Thus, a necessary condition for the instability to
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grow, i.e., for � j to take on positive values, is 3�̄2−1�0, or

equivalently 3�̄2−��0 in original variables. The most dan-
gerous wave number is the locus 
k j 
 =k0=1.

We now consider spatial modulations in the amplitude
about this preferred wave number, i.e.,

Aj�t� � ARj�x,t� = A0je
�j�Q�teiQ·x, �6�

where Q=Qxi�+Qyj� is a perturbation vector, and ARj is the
renormalized amplitude, whose implication will be clarified

below. Consistent with Eq. �5�, we can now write the expo-
nent controlling growth rate along each lattice vector as

� j�Q� = 
Q + k j
2���1 − 3�̄2� − �1 − 
Q + k j
2�2� . �7�

We now replace the Fourier space variables in the above
equation by their real space counterparts so that

� j � �t, Qx � − i�x, Qy � − i�y , �8�

thus obtaining

FIG. 1. Heterogeneous nucleation, crystal growth, and formation of grain boundaries in a 2D film from three randomly oriented seeds,
as simulated by the PFC model. The field plotted is the density variable ��x , t�. Note that the pattern is periodic inside each grain.
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Q + k j
2 � 1 − �2 − 2ik j · � = 1 − Lkj
. �9�

Combining Eqs. �7� and �9�, the space-time amplitude varia-
tions along each lattice vector is given by the sixth-order
linear partial differential equation

�tARj + �1 − Lkj
�Lkj

2 ARj + ��1 − 3�̄2�Lkj
ARj = ��1 − 3�̄2�ARj .

�10�

We also need nonlinear terms, which play a vital role in
pattern dynamics near onset of the instability, to complement
the above set of equations. There are a couple of different
ways to obtain these terms. One can directly look for the
nonlinear part in the normal form equations �42� for the dy-
namics of Aj in a hexagonal basis �27,43,44�. These equa-
tions have been widely used to study the dynamics and sta-
bility of exactly periodic rolls and hexagonal patterns
originating from the static conducting state in Rayleigh-
Bénard convection. Alternatively, one can derive these terms
to a particular order in � through a renormalization-group �or
multiple-scale� analysis of the governing differential equa-
tion. Here, we choose the latter approach, starting from Eq.
�3�, but only going far enough in the RG analysis to identify
the correct form of the terms.

We start with a perturbation series in �,

� = �0 + ��1 + �2�2 + �3�3 + ¯ , �11�

where �0 is a steady-state solution and � j��0� are the higher-
order corrections. As we are interested in amplitude varia-
tions in the hexagonal pattern, we pick �0 to be the steady
hexagonal solution, i.e., Eq. �2� with Aj�t� replaced by Aj�t
→ � �. Substituting in Eq. �3�, we obtain the following equa-
tion at O���:

��t − �2�1 + �2�2��1 = ��t − LP��1 = �2��0
3 − �0� , �12�

where

�2��0
3 − �0� = �1 − 3�̄2��

j=1

3

Aje
ikj·x

− 3A1�
A1
2 + 2
A2
2 + 2
A3
2�eik1·x

− 3A2�2
A1
2 + 
A2
2 + 2
A3
2�eik2·x

− 3A3�2
A1
2 + 2
A2
2 + 
A3
2�eik3·x

− 6A2
*A3

*�̄eik1·x − 6A1
*A3

*�̄eik2·x − 6A1
*A2

*�̄eik3·x

+ �other terms� + c.c. �13�

The asterisk denotes complex conjugation. To this order, the
“other terms” are functions of complex exponentials that do
not lie in the null space of the linear differential operator in
Eq. �12�, i.e., they are nonresonant terms. Therefore, they do
not contribute to unbounded growth in �1. The terms listed
in Eq. �13� are, however, resonant with the operator, and
their coefficients need to be renormalized in order to bound
the solution obtained by truncating the perturbation series at
O���. The renormalization procedure allows the amplitude
Aj, previously constant, to now have space-time variations
that absorb secular divergences. We assert that the nonlinear

terms in the amplitude equation to O��� must be the renor-
malized coefficients of the exponential terms in resonance
with the differential operator. For example, the terms
complementing the space-time operator along basis vector k1
must be

��1 − 3�̄2�AR1 − 3�AR1�
AR1
2 + 2
AR2
2 + 2
AR3
2�

− 6�AR2
* AR3

* �̄ , �14�

where the ARj are the renormalized amplitude functions �no
longer constants�. Note that these terms are completely iden-
tical to those predicted by normal form theory for a hexago-
nal basis �27,44�. Combining Eqs. �10� and �14� we write the
amplitude equation as

�tA1 = − �1 − Lk1
�Lk1

2 A1 − ��1 − 3�̄2�Lk1
A1 + ��1 − 3�̄2�A1

− 3�A1�
A1
2 + 2
A2
2 + 2
A3
2� − 6�A2
*A3

*�̄ , �15�

for lattice vector k1, and permutations thereof for k2 and k3,
where we have replaced the variables ARj by Aj.

We observe that the leading term in Eq. �14� is consistent
with the right-hand side of Eq. �10�, thereby providing a
natural overlapping link about which to match the linear sta-
bility and perturbation results. In a more abstract sense, we
draw a parallel between this method and the technique of
matched asymptotic expansions in singular perturbation
theory, where inner and outer asymptotic solutions are
matched over a common region of validity in the solution
space, to obtain a globally valid solution. This completes our
derivation of the amplitude equation via a heuristic or “quick
and dirty” approach. For future reference, we will call Eq.
�15� the quick and dirty RG �QDRG� equation, and the
method used to obtain it the QDRG �or heuristic� method. As
we have already demonstrated the remarkable accuracy with
which the QDRG equation mimics the PFC equation in a
previous paper �20�, we will refrain from presenting any new
evidence to that effect here.

To summarize the procedure, we first conducted a linear
stability analysis of the scaled PFC equation about the uni-
form state to obtain a linear differential operator controlling
the space-time evolution of the complex amplitude Aj of the
hexagonal pattern. We superimposed on this dispersion rela-
tion periodic modulations of the amplitude, and from the
dispersion relation in terms of these latter modulations, iden-
tified the gradient terms in the amplitude equation. We then
carried out the first step in a conventional RG analysis to
obtain the form of the nonlinear terms that should accom-
pany this differential operator, and combining the two re-
sults, we wrote down the amplitude equation for the hexago-
nal pattern. In this respect, our approach lacks the full
mathematical rigor of a conventional RG reduction or a
multiple-scale derivation, which gives it a somewhat dirty
appearance. However, we made no assumptions about the
scaling of the space-time variables in the system, nor did we
have to construct any secular solutions so far. We will com-
ment on extending this method systematically to higher or-
ders in � in the following section.
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IV. PROTO-RENORMALIZATION-GROUP DERIVATION

With the proto-RG method, our starting point is Eq. �3�
with the perturbation series Eq. �11�. Thus, to O��� we obtain
Eq. �12�, whereas to O��2� we get

��t − LP��2 = �2�3�0
2�1 − �1� . �16�

The structure of Eq. �12� allows us to infer that its simplest
particular solution will take the form

�1 = �
j=1

3

P1j�x,t�eikj·x + �
j=1

3

Q1je
2ikj·x + �

j=1

3

R1je
3ikj·x

+ �
j=1

3

S1je
isj·x + �

j=1

2

T1je
itj·x + �

j=1

2

U1je
iuj·x + �

j=1

2

V1je
ivj·x

+ c.c., �17�

where

s1 = − i�
	3

2
− j�

3

2
, s2 = i�

	3

2
− j�

3

2
, s3 = s2 − s1,

t1 = − i�
3	3

2
− j�

1

2
, t2 = i�

3	3

2
− j�

1

2
,

u1 = − i�
	3

2
− j�

5

2
, u2 = i�

	3

2
− j�

5

2
,

v1 = − i�	3 − j�2, v2 = i�	3 − j�2 �18�

are nonresonant modes generated by the cubic term. Note
that we have explicitly denoted the space-time dependence
of the secular coefficients P1j�x , t�, which are polynomials in
x, y and t, whereas by inspection, the other coefficients Q1j,
R1j, S1j, T1j, U1j, and V1j can be complex constants. Specifi-
cally, P11 satisfies

��t − LP�P11e
ik1·x = �1 − 3�̄2�A1eik1·x − 3A1�
A1
2 + 2
A2
2

+ 2
A3
2�eik1·x − 6A2
*A3

*�̄eik1·x

Þ��t + �1 − Lk1
�Lk1

2 �P11 = �1 − 3�̄2�A1 − 3A1�
A1
2 + 2
A2
2

+ 2
A3
2� − 6A2
*A3

*�̄ � Lk1
P11,

�19�

where Lkj
is the proto-RG operator for lattice vector k j. From

the above equation it is quite obvious that P11 cannot be
constant for any nontrivial solutions, and likewise for P12
and P13.

As P1j are secular, we now renormalize �32� � about ar-
bitrary regularization points X and T, as in the conventional
RG method, to get

� = �̄ + �
j=1

3

ARj�X,T�eikj·x + ��
j=1

3

�P1j�x,t� − P1j�X,T��eikj·x

+ ¯ + c.c., �20�

where ARj is now the renormalized amplitude that absorbs
secular divergences. Since � must be independent of these
regularization points, we have

Lk1

X,T� = 0

ÞLk1

X,TAR1�X,T� = �Lk1

X,TP11�X,T� + �2Lk1

X,TP21�X,T�

+ �3Lk1

X,TP31�X,T� + ¯ �21�

after applying orthogonality conditions. This is the general
form of the proto-RG equation for weakly nonlinear oscilla-
tors �36�. Lk1

X,T is the proto-RG operator Lk1
in Eq. �19�, with

variables x and t replaced by X and T, respectively. Chang-
ing back from �X ,T�→ �x , t� and ARj→Aj, and using Eqs.
�19� and �21�, we can write the amplitude equation along
lattice vector k1 to O��� explicitly as

�tA1 = − �1 − Lk1
�Lk1

2 A1 + ��1 − 3�̄2�A1 − 3�A1�
A1
2 + 2
A2
2

+ 2
A3
2� − 6�A2
*A3

*�̄ , �22�

with appropriate permutations for A2 and A3. Note that in
using Eq. �19�, we have replaced Aj by their renormalized
counterparts ARj as is consistent with the proto-RG proce-
dure, before reverting to the former notation for amplitude.
Upon comparing the two amplitude equations obtained so
far, Eqs. �15� and �22�, we note that the QDRG-derived equa-

tion carries the extra term ��1−3�̄2�Lk1
A1. Evidently, the

QDRG and the proto-RG methods produce different ampli-
tude equations when applied to the PFC equation, the extent
of this difference being controlled by the parameter

��1−3�̄2�.
As mentioned earlier, the principal advantage of using the

proto-RG method is the relative ease with which one can
progress to higher-order calculations. Let us now extend this
calculation to O��2�. We need �1 in order to evaluate the
right-hand side of Eq. �16�, which means that we additionally
need to evaluate Q1j, R1j, S1j, T1j, U1j, and V1j. The constant
values of these terms can be determined by inspection. For
example, by analogy with P11, we see that Q11 must satisfy

��t − LP�Q11e
2ik1·x = − 12�A1

2�̄ + 2A1A2
*A3

*�e2ik1·x

Þ ��t + �4 − L2k1
��L2k1

− 3�2�Q11

= − 12�A1
2�̄ + 2A1A2

*A3
*� . �23�

Unlike Eq. �19�, however, we see that Eq. �23� permits a
constant solution for Q11, which in turn is determined to be

Q11 = −
1

3
�A1

2�̄ + 2A1A2
*A3

*� . �24�

Similarly, constant solutions for the other coefficients are
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Q12 = −
1

3
�A2

2�̄ + 2A1
*A2A3

*� ,

Q13 = −
1

3
�A3

2�̄ + 2A1
*A2

*A3� ,

R1j = −
Aj

3

64
,

S11 = −
3

4
�A1

2A3 + 2A1�̄A2
* + A2

*2A3
*� ,

S12 = −
3

4
�A1A3

2 + 2A2
*�̄A3 + A2

*2A1
*� ,

S13 = −
3

4
�A2A3

2 + 2A1
*�̄A3 + A1

*2A2
*� ,

T11 = −
A1

2A3
*

12
,

T12 = −
A3

2A1
*

12
,

U11 = −
A1A2

*2

12
,

U12 = −
A3A2

*2

12
,

V11 = −
A1

2A2
*

12
,

V12 = −
A3

2A2
*

12
. �25�

We know that the particular solution to Eq. �16� has the form

�2 = �
j=1

3

P2j�x,t�eikj·x + ¯ + c.c. �26�

where we have shown only the resonant part of the solution.
The terms on the right-hand side of Eq. �16�, resonant with
lattice vector k1, evaluate to

� = ��1 − 3�̄2 − 6�
A1
2 + 
A2
2 + 
A3
2���1 − Lk1
�P11 − 3A1

2�1

− Lk1
�P11

* − 6A1A2�1 − Lk1
�P12

* − 6A1A3�1 − Lk1
�P13

*

− 6�̄A3
*�1 − Lk1

�P12
* − 6�̄A2

*�1 − Lk1
�P13

* − 6A1A2
*�1

− Lk1
�P12 − 6A1A3

*�1 − Lk1
�P13 − 6A2�̄S11 − 3A2

2U11

− 6A3A1
*T11 − 6A2A1

*V11 − 6A1
*A3

*S11 − 3A3
*2S12 − 3A2

*2S12
*

− 6A3�̄S13
* − 6A1

*A2
*S13

* − 3A3
2T12

* − 6A2A3
*Q12

* − 6A3A2
*Q13

*

− 3A1
*2R11 − 6A2A3Q11 − 6�̄A1

*Q11�eik1·x. �27�

Thus P21 satisfies

Lk1
P21 = � . �28�

The nonconstant terms in � �terms containing P1j� are now
ignored �35,36� while the remaining terms are determined
from their constant solutions Eqs. �24� and �25�. Thus, using
Eq. �21� we can write the amplitude equation along lattice
vector k1 to O��2� as

�tA1 = − �1 − Lk1
�Lk1

2 A1 + ��1 − 3�̄2�A1 − 3�A1�
A1
2 + 2
A2
2

+ 2
A3
2� − 6�A2
*A3

*�̄ + 11�2�̄A1
2A2A3 + �2�̄2A1�2
A1
2

+ 9
A2
2 + 9
A3
2� + 11�2�̄�2
A1
2 + 
A2
2 + 
A3
2�A2
*A3

*

+
27

2
�2A1

*A2
*2A3

*2 + 5�2A1
A1
2�
A2
2 + 
A3
2�

+ 12�2A1
A2
2
A3
2 +
3

64
�2A1
A1
4 +

5

2
�2A1
A2
4

+
5

2
�2A1
A3
4, �29�

with cyclic permutations for lattice vectors k2 and k3.
We can in principle extend the QDRG method also to

higher orders by performing the same steps above, until the
point where we identify the resonant terms on the right-hand
side of Eq. �16�, i.e., �. Combining this result with Eqs. �10�
and �14� we can then obtain the amplitude equation �29�, but

with an extra term ��1−3�̄2�Lk1
A1.

In summary, both the proto-RG and the QDRG can be
calculated including terms of O��2�, and the results differ by
a small but nonzero term. Which, if either, of these calcula-
tions is correct? And what is the origin of the discrepancy
between the two methods? Is the QDRG result not to be
trusted, being derived heuristically? Faced with two seem-
ingly incompatible, although very similar, results, it is natu-
ral to attempt an independent test of the analysis, which we
did using the standard method of multiple scales. This calcu-
lation is presented below, but owing to technical complica-
tions arising from the interference of modes and the need to
go to sixth order of perturbation theory, we found it only
feasible to perform the calculation for the case of one dimen-
sion. Nevertheless, we will see that, in fact, the QDRG result
Eq. �15� is more correct. The small discrepancy between this
result and the proto-RG result is finally resolved in Sec. VII.

V. MULTIPLE-SCALE DERIVATION

We now rederive the amplitude equation using the tradi-
tional method of multiple scales. As the primary purpose of
this derivation is to verify the previous calculations via an
independent method, we stick to a one-dimensional analysis
here that considerably simplifies the algebra. For conve-
nience we use 	2=�, and write Eq. �3� in 1D as
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��t − �x
2�1 + �x

2�2�� = 	2�x
2��3 − �� . �30�

The basic premise of the multiple-scale analysis is that while
the pattern itself varies on the scale of its wavelength
�2
 /k0�, its amplitude varies on much larger length and time
scales. It is then appropriate to introduce slowly varying ar-
guments

X = 	x, T = 	2t �31�

for the envelope function A�X ,T�. This scaling was previ-
ously applied by Gunaratne et al. �27� to the Swift-
Hohenberg equation with success �based on the form of the
discrete dispersion relation�, and as the PFC equation is es-
sentially a conserved analog of the Swift-Hohenberg equa-
tion we anticipate that the same scaling holds here.

Derivatives scale as follows:

�x → �x + 	�X,

�x
2 → �x

2 + 2	�X�x + 	2�X
2 ,

�t → 	2�T, �32�

whereas the operator

�x
2�1 + �x

2�2 → �
j=0

6

	 jL j �33�

such that

L0 = �x
2�1 + �x

2�2,

L1 = 4�X�x
3�1 + �x

2� + 2�X�x�1 + �x
2�2,

L2 = 4�X
2�x

4 + 10�X
2�x

2�1 + �x
2� + �X

2�1 + �x
2�2,

L3 = 12�X
3�x

3 + 8�X
3�x�1 + �x

2� ,

L4 = 13�X
4�x

2 + 2�X
4�1 + �x

2� ,

L5 = 6�X
5�x,

L6 = �X
6 . �34�

We now expand � in a perturbation series in 	 to get

� = �0 + 	�1 + 	2�2 + 	3�3 + ¯ . �35�

Using Eq. �32� and the above series, the 	 expansion of the
nonlinear term in Eq. �30� can be written as

�x
2��3 − �� = �x

2��0
3 − �0� + 	��x

2�3�0
2�1 − �1� + 2�X�x��0

3

− �0�� + 	2��x
2�3�0�1

2 + 3�0
2�2 − �2�

+ 2�X�x�3�0
2�1 − �1� + �X

2��0
3 − �0�� + 	3��x

2��1
2

+ 6�0�1�2 + 3�0
2�3 − �3� + 2�X�x�3�0�1

2

+ 3�0
2�2 − �2� + �X

2�3�0
2�1 − �1�� + 	4��x

2�3�1
2�2

+ 3�0�2
2 + 6�0�1�3 + 3�0

2�4 − �4� + 2�X�x��1
2

+ 6�0�1�2 + 3�0
2�3 − �3� + �X

2�3�0�1
2 + 3�0

2�2

− �2�� + O�	5� . �36�

Substituting Eq. �35� in Eq. �30�, and using the scaled opera-
tors in Eqs. �32�–�34�, we can write equations satisfied by the
�m at each O�	m�. At O�1� we obtain,

L0�0 = 0

Þ�0 = �̄ + A01�X,T�eix + c.c. �37�

where Amn is the complex amplitude of mode n at O�	m�. At
O�	� we get

L0�1 + L1�0 = 0

Þ�1 = A11�X,T�eix + c.c. �38�

where �and henceforth� we neglect the constant term in view
of its inclusion in Eq. �37�. At the next order we have

L0�2 = �T�0 − L1�1 − L2�0 − �x
2��0

3 − �0� . �39�

For �2�x , t� to remain bounded we have to guarantee that the
right-hand side of Eq. �39� does not have a projection in the
null space of L0, which yields a solvability condition �30,31�
�also known as the Fredholm alternative�. Applying the al-
ternative imposes the following condition on the amplitude
at O�	2�:

�TA01 = 4�X
2A01 + �1 − 3�̄2�A01 − 3A01
A01
2. �40�

Thus,

�2 = A21e
ix + A22e

2ix + A23e
3ix + c.c. �41�

where A22=A01
2 �̄ /3 and A23=A01

3 /64.
At subsequent orders, the following equations are ob-

tained for �m:

L0�3 = �T�1 − L1�2 − L2�1 − L3�0 − ��x
2�3�0

2�1 − �1�

+ 2�X�x��0
3 − �0�� �O�	3�� ,

L0�4 = �T�2 − L1�3 − L2�2 − L3�1 − L4�0 − ��x
2�3�0�1

2

+ 3�0
2�2 − �2� + 2�X�x�3�0

2�1 − �1� + �X
2��0

3

− �0�� �O�	4�� ,

L0�5 = �T�3 − L1�4 − L2�3 − L3�2 − L4�1 − L5�0 − ��x
2��1

2

+ 6�0�1�2 + 3�0
2�3 − �3� + 2�X�x�3�0�1

2 + 3�0
2�2

− �2� + �X
2�3�0

2�1 − �1�� �O�	5�� ,

L0�6 = �T�4 − L1�5 − L2�4 − L3�3 − L4�2 − L5�1 − L6�0

− ��x
2�3�1

2�2 + 3�0�2
2 + 6�0�1�3 + 3�0

2�4 − �4�

+ 2�X�x��1
2 + 6�0�1�2 + 3�0

2�3 − �3� + �X
2�3�0�1

2

+ 3�0
2�2 − �2�� �O�	6�� , �42�

and successive applications of the Fredholm alternative yield
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the following amplitude equations at those respective orders:

�TA11 = − 12i�X
3A01 + 4�X

2A11 − �1 − 3�̄2�2i�XA01 + �1

− 3�̄2�A11 − 6A11
A01
2 − 3A01
2 A11

* + 6i�X�A01
2 A01

* � ,

�TA21 = − 13�X
4A01 − 12i�X

3A11 + 4�X
2A21 − �1 − 3�̄2��2i�XA11

+ �X
2A01� + �1 − 3�̄2�A21 − 3A11

2 A01
* − 6
A01
2A21

− 6�̄A22A01
* − 3A23A01

* 2 − 6A01
A11
2 − 3A01
2 A21

*

+ 6i�X�A01
2 A11

* + 2
A01
2A11� + 3�X
2�A01

2 A01
* � ,

�TA31 = 6i�X
5A01 − 13�X

4A11 − 12i�X
3A21 + 4�X

2A31 − �1 − 3�̄2�

��2i�XA21 + �X
2A11� + �1 − 3�̄2�A31 − 6A11A21A01

*

− 6
A01
2A31 − 6A01A21A11
* − 6A23A01

* A11
*

− 6A01A11A21
* − 3A01

2 A31
* − 6�̄A32A01

* − 3A33A01
* 2

− 6�̄A22A11
* + 6i�X�2A01
A11
2 + 2
A01
2A21 + A01

* A11
2

+ A01
2 A21

* � + 3�X
2�A01

2 A11
* + 2
A01
2A21

* � + h.o.t,

�TA41 = �X
6A01 + 6i�X

5A11 − 13�X
4A21 − 12i�X

3A31 + 4�X
2A41 − �1

− 3�̄2��2i�XA31 + �X
2A21� + �1 − 3�̄2�A41 − 3A21

2 A01
*

− 6A11A31A01
* − 6A01A41A01

* − 6A11A21A11
*

− 6A01A31A11
* − 3A11

2 A21
* − 6A01
A21
2 − 6A01A11A31

*

− 3A01
2 A41

* − 6�̄A42A01
* − 3A43A01

* 2 − 6�̄A32A11
*

− 6A33A01
* A11

* − 3A23A11
* 2 − 6�̄A33A22

* − 6A01
A23
2

+ 6i�X�2A11A21A01
* + 2
A01
2A31 + A11
A11
2

+ 2A01A21A11
* + 2A01A11A21

* + A01
2 A31

* �

+ 3�X
2�2A01
A11
2 + A01

* A11
2 + 2
A01
2A21 + A01

2 A21
* �

+ h.o.t �43�

Here, “h.o.t.” refers to higher-order terms that are functions
of A01 and its derivatives. The amplitude function for the
pattern �eix� can be written as

A�X,T� = A01�X,T� + 	A11�X,T� + 	2A21�X,T� + ¯ .

�44�

Using Eqs. �40�, �43�, and �44�, and scaling back to the origi-
nal variables, i.e., X→	−1x and T→	−2t, the amplitude
equation to O�	4� can be written as

�tA = 4�x
2A − 12i�x

3A − 13�x
4A + 6i�x

5A + �x
6A − 	2�1 − 3�̄2�

��2i�x + �x
2�A + 	2��1 − 3�̄2�A − 3A
A
2 + 3�2i�x + �x

2�

��A
A
2�� − 	4� 3

64
A
A
4 + 2�̄2A
A
2
 + O�	6� , �45�

or more compactly, after replacing 	2→�, to O��2�

�tA = − �1 − L1D�L1D
2 A − ��1 − 3�̄2�L1DA + ��1 − 3�̄2�A

− 3�A
A
2 + 3�L1D�A
A
2� − �2� 3

64
A
A
4 + 2�̄2A
A
2


+ O��3� , �46�

where L1D��2i�x+�x
2�.

Let us now compare Eq. �46� with the one-dimensional
equivalents of the O��� amplitude equations that we have
previously derived for hexagonal patterns, i.e., Eqs. �15� and
�22�. Without rederiving, the one-dimensional equivalents
are readily obtained by setting

A2 = A3 = 0 and Lk2
= L1D �47�

in those equations. We observe that Eq. �46� �also truncated
to O���� contains at least one term that is not present in either
of the equations previously derived.

We note that the QDRG result of Eq. �15� is closer to the
multiple-scale result compared to the proto-RG result �and
the RG result in Sec. VI�, in that it fails to capture only the
nonlinear derivative term at O���, which is actually a higher-
order correction to 3A 
A
2. This is clearly because the spatial
operator in the QDRG method is an outcome of a linear
stability analysis, whereas one would have to perform a non-
linear stability analysis to obtain nonlinear spatial derivative
terms. The clear advantage of the QDRG calculation how-
ever is that it was done with significantly less effort, and in a
rotationally covariant manner; perturbation theory to O���
was all that was required. The multiple-scale analysis, on the
other hand, required a sixth-order perturbation theory treat-
ment, and in order to simplify the algebra, we only worked in
one dimension. In higher dimensions, the interference be-
tween the modes would have created a huge increase in the
complexity at each successively higher order in perturbation
theory. The QDRG calculation is only heuristic, but as we
will show below, can be justified from a full calculation,
albeit with a minor technical modification of the previously
published recipe, to take into account the special feature of
the conservation law in the PFC model.

We conclude therefore that although the QDRG result of
Eq. �15� and the multiple-scale method to O��� still do not
yield consistent results, the QDRG method is still an im-
provement over the proto-RG method. In order to track down
the source of the discrepancy, we next attempted a full RG
calculation without any shortcuts, i.e., systematically calcu-
lating explicitly and renormalizing all the divergent terms to
O���.

VI. RENORMALIZATION GROUP DERIVATION

In this section, we present a derivation of the amplitude
equation using the conventional RG method, in one dimen-
sion for pedagogical simplicity �just as was done for the
method of multiple scales�. The calculation is complicated
because of the need to obtain explicit formulae for the secu-
lar divergences �32,34�, but this is possible at the order to
which we worked.

RENORMALIZATION-GROUP THEORY FOR THE PHASE-¼ PHYSICAL REVIEW E 74, 011601 �2006�

011601-9



Starting from Eq. �30� �with 	2 replaced by �� and a naive
perturbation series in � as in Eq. �11� the zeroth- and first-
order solutions can be written as

�0 = �̄ + Aeix + c.c.,

�1 = P1�x,t�eix + Q1e2ix + R1e3ix + c.c. �48�

The difficulty in the conventional RG method comes from
the need to explicitly determine the form of the secular co-
efficient P1. While this is a routine task for ODEs, it is far
from trivial for PDEs. A further complication is that the so-
lution for P1 must be the highest-order polynomial that sat-
isfies the PDE, to be able to eliminate all secular diver-
gences. It turns out that this is critical to obtaining the
rotationally covariant operator at a lower order in �. Using
the method of undetermined coefficients we find such a so-
lution to be

P1�x,t� = ��1 − 3�̄2 − 3
A
2�A�
j=1

6

CjP1j�x,t� , �49�

where

P11 = t ,

P12 = −
1

720
�− 89 280t2 + 7680t3 + 4320ixt − 34 560ixt2

− 4680x2t + 2880x2t2 − 1440ix3t + 120x4t + x6� ,

P13 =
i

720
�− 5760it2 − 1560xt + 960xt2 − 720ix2t + 80x3t

+ x5� ,

P14 =
1

312
�192t2 − 288ixt + 48xt2 + x4� ,

P15 = −
i

72
�24xt + x3� ,

P16 = −
x2

8
, �50�

and the constants Cj satisfy � j=1
6 Cj =1.

The RG method proceeds as follows: �1� dummy vari-
ables X and T are introduced, �2� the divergent terms in P1j
of the form xmtn are split to read xmtn= �xmtn−XmTn�+XmTn,
�3� the constant amplitude A is redefined using an � expan-
sion A=AR�X ,T��1+� j=1� jZj�, where AR is now the renor-
malized amplitude, and Zj are the renormalization constants
which are chosen order by order in � to absorb the XmTn

terms, and �4� since the solution � is independent of X and T,
all derivatives of � with respect to X, T, or a combination
thereof must be zero. This last condition yields the following
RG equations at O���:

�AR

�T
= C1��1 − 3�̄2 − 3
A
2�A ,

−
�6AR

�X6 = C2��1 − 3�̄2 − 3
A
2�A ,

− 6i
�5AR

�X5 = C3��1 − 3�̄2 − 3
A
2�A ,

13
�4AR

�X4 = C4��1 − 3�̄2 − 3
A
2�A ,

12i
�3AR

�X3 = C5��1 − 3�̄2 − 3
A
2�A ,

− 4
�2AR

�X2 = C6��1 − 3�̄2 − 3
A
2�A . �51�

Further, using � j=1
6 Cj =1 and replacing AR→A, X→x, and

T→ t, the above equations can be combined to read

�tA + �1 − L1D�L1D
2 A = ��1 − 3�̄2�A − 3�A
A
2, �52�

which is also the 1D proto-RG equation.
We close this section with some interesting observations.

�i� The equations in �51� do not form a unique set of solv-
ability conditions. Other equations are possible, e.g.,

−
1

16

�4AR

�X2 � T2 = C2��1 − 3�̄2 − 3
A
2�A ,

−
3i

8

�3AR

�X � T2 = C3��1 − 3�̄2 − 3
A
2�A ,

� �53�

The choice of Eq. �51� is motivated by the observation that it
yields a rotationally covariant amplitude equation, and other
physical considerations such as the microscopic equation be-
ing only first order in time. �ii� The list of possible terms P1j
does not include the leading polynomial term Bx, where B is
an arbitrary constant, as this term is annihilated by the kernel
of the PDE. Thus no constraint is available to fix B. It turns
out that unless this term is also renormalized, all secular
divergences are not removed. This may explain the absence
of certain terms in Eq. �52� that however show up in the
multiple-scale analysis. To be certain, the calculation needs
to be carried out to higher orders; but we do not attempt this
here.

VII. OPERATOR ORDERING AMBIGUITY AND ITS
RESOLUTION IN THE RG METHOD

In this section, we resolve the discrepancy between the
answers generated by the QDRG method, the RG methods,
and the method of multiple scales. Curiously, no such dis-
crepancy was observed in the treatment of the Swift-
Hohenberg equation, a nonconservative OPE, by RG meth-
ods �32,34,36� and multiple-scale techniques �27�. In fact, it
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can also be readily ascertained that the QDRG method will
produce the same result as the other methods for this equa-
tion, which we leave as a simple exercise for the reader. Why
then does a discrepancy arise in the PFC equation? Clearly,
the role played by the extra Laplacian, a consequence of the
conservation law in this case, must be nontrivial.

Note that this Laplacian operator carries over to the right-
hand side of both Eq. �12�, the O��� equation for the RG
methods, and Eq. �39�, the O��� equation for multiple scales.
However, also note that, in the method of multiple scales, in
addition to the nonlinear terms, this operator is also sub-
jected to an � expansion. There is no provision in any of the
RG methods to allow the same to happen to the Laplacian. In
other words, the operator may very well have not existed on
the right-hand side at O���, and we would have obtained
exactly the same result as before.

A clue to the subtlety is to look at the way in which the
secular terms are renormalized. The naive way, as followed
here, would be to evaluate the right-hand side first, look for
secular terms later, and then renormalize these divergent co-
efficients. However, this will not eliminate secular terms
generated by the differential operator. In order to eliminate
all secular terms, the amplitude must be renormalized before
differentiation, for the simple reason that renormalization
and differentiation are noncommutable operations. In other
words, there is an operator ordering ambiguity in the imple-
mentation of the renormalization-group method, exposed in
this problem by the conservation law. Performing the calcu-
lation with the operations of renormalization and differentia-
tion reversed is equivalent to performing an � expansion in
the differential operator.

We find that by following this procedure, additional terms
in the coefficients of the resonant modes are automatically
generated. Specifically, when we evaluate the right-hand side
of Eq. �12� after assuming the amplitudes of �0 to have a
space-time dependence, the renormalized coefficients of the
resonant exp�ik1 ·x� forcing term work out to be

���1 − 3�̄2�A1 − 3A1�
A1
2 + 2
A2
2 + 2
A3
2� − 6A2
*A3

*�̄

− �1 − 3�̄2�Lk1
A1 + 6�
A1
2 + 
A2
2 + 
A3
2�Lk1

A1

+ 6A1
*
�A1
2 + 3A1

2Lk1
A1

* + 6A1A2
*Lk1

A2 + 6A1A2Lk1
A2

*

+ 6A1A3
*Lk1

A3 + 6A1A3Lk1
A3

* + 6�̄A3
*Lk1

A2
*

+ 6�̄A2
*Lk1

A3
* + 12�̄�A2

* · �A3
* + 12A1��A1 · �A1

*

+ �A2 · �A2
* + �A3 · �A3

*� + 12A2�A1 · �A2
*

+ 12A2
*�A1 · �A2 + 12A3�A1 · �A3

* + 12A3
*�A1 · �A3� ,

�54�

which when specialized for the 1D case becomes

���1 − 3�̄2�A − 3A
A
2 − �1 − 3�̄2�L1DA + 6
A
2L1DA

+ 3A2L1DA* + 6A*� �A

�x

2

+ 12A
�A

�x

�A*

�x
�

= ���1 − 3�̄2�A − 3A
A
2 − �1 − 3�̄2�L1DA

+ 3L1D�A
A
2�� . �55�

We note that the above terms are identical to the O��� terms
on the right-hand side of Eq. �46�. Therefore the correct am-
plitude equation to O��� should contain all the terms in Eq.
�54�. In order to illustrate the generality of this approach, we
apply this idea again in the Appendix to the Van der Pol
oscillator, another equation for which the previously reported
implementation of the RG method, and the method of mul-
tiple scales produce different answers.

We wish to point out that the assumption of a constant
amplitude in the �0 solution makes it possible for the coef-
ficients of the nonresonant terms in �1 to assume constant
values, a fact that is favorably used in extending the
proto-RG calculation to the next order. However, with our
modification to the proto-RG procedure, it is clear that for
the PFC equation at least, nonresonant coefficients cannot
have constant values. Thus computing higher-order correc-
tions to the amplitude equations, will require explicit con-
struction of particular solutions, which may limit progress
beyond O��� by purely analytical methods.

VIII. CONCLUSION

We have presented a detailed illustration of various per-
turbative techniques to derive amplitude equations from or-
der parameter equations that produce periodic patterns. Am-
plitude equations serve as powerful analytical tools with
which to investigate pattern stability and defect interactions,
as well as accurate coarse-grained descriptions of pattern-
forming systems, and this calls for practical and reliable
mathematical methods for deriving them.

Although our benchmark for accuracy is the widely ac-
cepted method of multiple scales, it is critical to note that
this method is not fail safe, because it requires a priori iden-
tification of the way in which space and time scale with the
small parameter �. There are many instances where surpris-
ing scales emerge that would not easily be identified a priori
�e.g., see the analysis of the Mathieu equation in �32��.

The method of multiple scales typically involves a very
lengthy calculation before a rotationally covariant operator
ensues, and involves computation of various higher-order
terms which ultimately do not improve the overall result sig-
nificantly. In the example presented here, a sixth-order cal-
culation was required to get the lowest-order amplitude
equation. The reader should bear in mind that the fairly in-
volved calculation shown in this paper was only one dimen-
sional.

On the other hand, the practicality of RG-based methods,
where the amplitude equation was obtained very quickly at
O��� itself, is self-evident. No guesswork was required to
determine the scaling of the variables and all calculations
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started with naive perturbation expansions in �. In particular,
our so-called quick and dirty �QDRG� method and the
proto-RG method are attractive techniques, because there is
virtually no need to construct explicit solutions. Both meth-
ods use only information available from the differential
equation and in that sense, are very general ways of building
a controlled coarse-grained approximation to the order pa-
rameter equation being studied. Furthermore, the QDRG
method gives the correct result quickly, apart from a small
nonlinear rotationally covariant gradient term which is not
captured by the linear stability argument.

At O���, we have shown that the QDRG method produces
a more accurate amplitude equation compared to the
proto-RG method, by capturing certain extra terms that are
revealed in the multiple-scale analysis. However, with our
corrected order of operators in the way in which the RG is
implemented, we find that all methods converge identically
at this order.

In conclusion, we have presented a detailed calculation of
the coarse-graining of the phase field crystal equation, for
small �. Elsewhere �20,21�, we have demonstrated the utility
of the coarse-grained equation in performing large-scale
simulations of materials processing phenomena in two di-
mensions. Further developments of these techniques are un-
der way, implementing adaptive mesh refinement to solve the
amplitude equations obtained here in two and three dimen-
sions, and going beyond the single-mode approximation
which has formed the basis of our work and that of Elder and
collaborators. We hope to report on these developments at a
future date.
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APPENDIX: VAN DER POL OSCILLATOR

In this Appendix, we explore the commuting of differen-
tiation and renormalization with a simple ordinary differen-
tial equation example: the Van der Pol oscillator. Note that
this yet another case in which a differential operator is mul-
tiplied by a small parameter �see right-hand side of Eq.
�A1��.

The autonomous ODE is given by

y� + y = ��1 − y2�y�, �A1�

where the prime denotes differentiation with respect to the
variable t. As there is a derivative on the right-hand side of
this equation we anticipate that the proto-RG amplitude
equation will fail to capture certain terms that turn out in the
multiple-scale analysis.

It is known that the scaling �=�t works for this problem
�30�. Hence,

y� → ��t + ����y ,

y� → ��t
2 + 2����t + �2��

2�y , �A2�

where the subscripts denote partial differentiation. Expand-
ing y in a perturbation series

y = y0 + �y1 + �2y2 + ¯ , �A3�

we obtain

��t
2 + 1�y0 = 0 �O�1�� ,

��t
2 + 1�y1 = − 2���ty0 + �1 − y0

2��ty0 �O���� ,

��t
2 + 1�y2 = − 2���ty1 + �1 − y0

2��ty1 − ��
2y0 − 2y0y1�ty0

+ �1 − y0
2���y0 �O��2�� . �A4�

From this we find

y0 = A01���eit + c.c.,

y1 = A11���eit + A13���e3it + c.c. �A5�

Application of the Fredholm alternative at O��� and O��2�
yields the following amplitude equations:

2i��A01 = iA01�1 − 
A01
2� ,

��
2A01 + 2i��A11 = i�A11 − 2A11
A01
2 − A01

2 A11
* �

+ ���A01 − A01
A01
2� +
A01
A01
4

8
,

�A6�

which can be combined after scaling back to the original
variables to get

�t
2A + 2i�tA = ��iA�1 − 
A
2� + �tA�1 − 
A
2�� + O��2� .

�A7�

Nozaki and Oono �36�, on the other hand, have obtained
the following equation using the proto-RG method:

�t
2A + 2i�tA = �iA�1 − 
A
2� + O��2� . �A8�

Note that the missing term �tA�1− 
A
2� can be captured by
differentiating the lower-order result, i.e.,

2i�tA = �iA�1 − 
A
2� , �A9�

but this does not seem a very general approach. In particular,
it is not obvious how this can be extended to PDEs.

The O��� equation using the proto-RG method reads

y1� + y1 = �1 − y0
2�y0�, �A10�

where

y0 = Aeit + c.c.,

y1 = P�t�eit + Qe3it + c.c., �A11�

where A can be a constant while P cannot. Thus, the
proto-RG operator turns out to be

L = �t
2 + 2i�t, �A12�

and the proto-RG equation reads
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LA = �LP + O��2� , �A13�

where A is now the renormalized amplitude. When evaluat-
ing LP, however, we allow for the possibility that A, which
appears on the right-hand side of the equation can also be a
function of t, or equivalently renormalize A on the right-hand
side before differentiating y0, which gives us

LP = ��iA�1 − 
A
2� + �tA�1 − 
A
2�� . �A14�

Therefore the true amplitude equation should read �using Eq.
�A13��

LA = ��iA�1 − 
A
2� + �tA�1 − 
A
2�� + O��2� , �A15�

which is identical to the multiple-scale result of Eq. �A7�.
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