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Critical Dynamics of a Vortex-Loop Model for the Superconducting Transition

Vivek Aji and Nigel Goldenfeld
Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080

(Received 31 May 2001; published 17 October 2001)

We calculate analytically the dynamic critical exponent zMC, measured in Monte Carlo simulations
for a vortex loop model of the superconducting transition, and account for the simulation results. In the
weak screening limit, where magnetic fluctuations are neglected, the dynamic exponent is found to be
zMC � 3�2. In the perfect screening limit, zMC � 5�2. We relate zMC to the actual value of z observable
in experiments and find that z � 2, consistent with some experimental results.

DOI: 10.1103/PhysRevLett.87.197003 PACS numbers: 74.40.+k, 05.70.Jk, 75.40.Gb, 75.40.Mg
The discovery of the short coherence length cuprate su-
perconductors has allowed heretofore inaccessible fluctua-
tion effects in superconductors to be probed. Beginning
with the penetration depth measurements of Kamal et al.
[1], and including measurements of magnetic susceptibility
[2,3], resistivity [3,4], and specific heat [5], static and dy-
namic fluctuation effects have been convincingly observed
and accurately quantified. These measurements are consis-
tent with the theory of a strongly type-II superconductor,
with a weak coupling of the order parameter to the elec-
tromagnetic field, described by the 3D XY model coupled
to a gauge field [6].

The dynamic critical exponent, z, characterizes the re-
laxation to equilibrium of fluctuations in the critical regime
of systems exhibiting a second order phase transition [7,8].
In particular it relates the time scale of relaxation, t, to a
relevant length scale, x: t � xz. For infinite systems, x
is the correlation length j. Near the critical point, the cor-
relation length diverges and the relaxation time tends to
infinity, a phenomenon known as critical slowing down.
In finite size scaling studies, x is identified as the system
size L.

The dynamic critical exponent, obtained from the mea-
surement of longitudinal dc resistivity for YBCO, is z �
1.5 6 0.1 in finite but small magnetic fields [9]. Similar
results were reported for the zero-field dc conductivity
[10,11]. Frequency-dependent microwave conductivity ex-
periments yield z � 2.3 3.0 [12]. On reanalysis it was
found that the data were consistent with z � 2 provided
one neglected the region close to Tc [13]. Moloni et al.
obtained z � 1.25 6 0.05 at low magnetic fields [14], but
a later, more complicated, analysis by these authors gave
z � 2.3 6 0.2. More recently, dc conductivity measure-
ments on single crystal BSCCO samples were interpreted
to give evidence for z � 2 [15]. In summary, experi-
ments do not yet yield a consistent picture of the critical
dynamics.

If the dynamic exponent were indeed z � 1.5, then this
would be surprising. Precisely this value is obtained for
the superfluid transition in 4He, where the combination
of second sound (a propagating mode, therefore z � 1)
and order parameter dynamics (diffusive, therefore z � 2)
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leads to z � 3�2 (model E dynamics) [7]. In YBCO,
however, the combination of a momentum sink arising
from the lattice and the Coulomb interaction destroying the
longitudinal current fluctuations should lead to pure order
parameter dynamics and a prediction that z � 2 (model
A dynamics). It is of course possible that some other
mechanism can yield z � 1.5.

To shed light on these issues the critical dynamics was
investigated numerically by performing a Monte Carlo
(MC) calculation of z for the three-dimensional XY model,
in the vortex representation (the so-called Villain model
[16]), with and without magnetic screening [17]. The spin
wave degrees were replaced by discrete vortex variables,
and the dynamics imposed was dissipative. The dynamic
exponent estimated through a scaling analysis of the resis-
tivity calculated within linear response will be denoted by
zMC. Surprisingly enough the exponent was found to be
zMC � 1.5 when the interaction was unscreened while it
was found to be zMC � 2.7 in the presence of screening.
Not only does the value zMC � 1.5 agree with previous
results obtained by performing a similar analysis on the
London lattice model [18] but also agrees with the value
of z reported in some of the experiments cited above. The
observations in the computer simulations are surprising be-
cause there are no collective modes in the Villain model
so that the dynamics would be expected to be purely dif-
fusive, with zMC � 2. Nevertheless, and contrary to ex-
pectation, here too the system seems to support model E
dynamics. Other extensive simulation studies report val-
ues of zMC � 1.5 and zMC � 2, depending on the bound-
ary conditions [19].

The purpose of this Letter is to calculate analytically
the dynamic exponent for the Villain model. The equa-
tion of motion, corresponding to the Monte Carlo steps
implemented in the numerical computation, is derived and
analyzed near equilibrium. A scaling analysis is used to
extract zMC. We are able to explain the simulation results
in both strong and weak screening limits. We also show
that the simulation results cannot be interpreted as pro-
viding evidence in support of the z � 1.5 result found in
some experiments, because they do not measure the true
dynamic critical exponent: zMC fi z. We show how to
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relate zMC and z, and find that the result zMC � 1.5 is in
fact an artifact of taking the thermodynamic limit and the
range of vortex interactions to infinity limit in the wrong
order. The correct physical prediction from the simulation
is z � 2 for any finite range of interaction, consistent with
some observations.

The Villain model.—Consider the XY model with a fluc-
tuating vector potential �a represented as lattice gauge the-
ory link variables aij � ai 2 aj :

H � 2J
X
�i,j�

cos�fi 2 fj 2 l21
0 aij� 1

1
2

X
�

� �= 3 �a	2,

(1)

where J is the coupling constant, l0 is the screening
length, and fi is the phase of the condensate on site i of a
simple cubic lattice of size N � L3 with periodic bound-
ary conditions. The first sum is taken over nearest neigh-
bors, while the second is over plaquettes of the lattice.
The lattice spacing has been set to unity. The fluctuating
gauge potential aij satisfies the constraint that at each site i

the discrete divergence vanishes: � �= ? �a	i � 0. The phase
degrees of freedom can be replaced by vortices by intro-
ducing the periodic Villain function to replace the cosines.
Standard manipulations [20] lead to the dual Hamiltonian:

HV �
1
2

X
i,j

�ni ? �njGij�l0	 , (2)

where the �ni’s are vortex variables that reside on the links
of the dual lattice and Gij is the screened lattice Green’s
function,

Gij�l0	 � J
�2p�2

L3

X
�k

exp�i �k ? � �ri 2 �rj�	
2

P3
m�1 2 cos�km�	 1 l

22
0

. (3)

The two limits that are considered in the simulations are the
long range case, l0 ! `, and the short range case, l0 !
0. Actually the simulations were performed by setting
l0 � 0 and l0 � ` in (3). The distinction between the
limit and the actual simulations will turn out to be signifi-
cant. In both cases the local constraint of no monopoles,
� �= ? �n	i � 0, is imposed. Each Monte Carlo move con-
sists of trying to create a closed vortex loop around a
plaquette. The trial state is accepted or rejected accord-
ing to the heat bath algorithm with probability 1��1 1

exp�bDE�	, where DE is the change in energy and b �
1�kBT , with kB being Boltzmann’s constant. Each time a
vortex loop is formed it generates a voltage pulse, DQ �
61, perpendicular to its plane, the sign depending on the
orientation. This voltage fluctuation gives rise to an elec-
trical resistance, R, which can be analyzed within linear
response theory. A point that will be important to note
here is that R depends on the average change in the total
number of loops pointing in a given direction at each time
step. The unit of time is normalized so that, on average,
an attempt has been made to create or destroy one loop per
plaquette.
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Dipole gas description.—It is known that near Tc the
static properties are dominated by the proliferation of vor-
tex loops of unit strength, i.e., it is energetically unfa-
vorable to create vortex loops of greater strength at each
plaquette. The interaction between these vortex loops is
spherically symmetric and so is the state in thermal equi-
librium. As it stands, the computations above have been
performed on what is known as the low temperature Villain
model and the critical point is obtained by looking at the
intersection of the low and high temperature Villain models
(for details see Ref. [20]). The physics described here is
that of an interacting gas of dipoles, �d. In the long range
case they interact via the standard Coulomb term which
falls off as 1�r3; note that these dipoles interact antiferro-
magnetically, and are not current loops, which interact via
the standard ferromagnetic interaction.

For our analysis we consider a cubic lattice, L3, on
whose vertices reside the loop variables, �li. In terms of
the vortex variables �ni � �= 3 �li, as can be seen by writ-
ing out the components. The three components are each ei-
ther 61 or 0, corresponding to a clockwise, anticlockwise,
or absence of a vortex loop along the three principle di-
rections, x y, or z. The corresponding probabilities on site
i at time step s are given by Pa

is�1	, Pa
is�21	, and Pa

is�0	,
where a is a coordinate label. The quantity computed in
the simulations is the total number of loops Na

s pointing
along a given direction a at time step s:

Na
s11 �

X
i

�Pa
is11�1	 2 Pa

is11�21	� . (4)

To study the behavior of Na
s , we follow the standard

procedure of writing out the master equation for the time
development of the probabilities and evaluating (4) [21].
As previously indicated, the equilibrium state is spheri-
cally symmetric. That is, on average, DEa

is , the change
in energy on adding a unit loop on site i at time s, is
zero. This implies that transition probabilities for creat-
ing and annihilating a vortex loop are equal. The heat bath
algorithm ensures that the conditions of detailed balance
are satisfied. Furthermore, at Tc, the restriction to unit
loops per plaquette results in Pa

is�0	 � Pa
is�1	 � Pa

is�21	
in equilibrium. Since we are interested in small deviations
from equilibrium, we impose a uniform perturbation dla

per site and see how it relaxes back to equilibrium. This
implies dNa � L3dla. To leading order the equation of
motion reads

ddNa

dt
� 2

2
3

b
X

i

aa
i

µ
≠DEa

i

≠la

∂
0
dla, (5)

where the subscript 0 denotes equilibrium, and aa
i is the

transition probability in equilibrium for creating the dipole
loops.

Scaling analysis.—Equation (5) is the basis for the scal-
ing analysis that follows. The only relevant length scales
are the system size, L, and the correlation length, j. aa

i

is an equilibrium microscopic transition probability which
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remains finite at the critical point while b
P

i DEa
i is di-

mensionless and scales as �L�j�3 away from Tc for finite
systems. This follows because, by definition, thermody-
namic additivity occurs on a scale beyond the correlation
length. While the free energy is extensive for all tempera-
tures, at Tc, j � L and b

P
i DEa

i is independent of L.
Thus the characteristic time scale of relaxation of the per-
turbation, t, scales as

t �
j3�l	
aa

i
, (6)

where �l	 is the scaling dimension of the field l.
For the long range case the binding energy is given by

bH � 2b
X
i,j

�di ? �dj 2 3� �di ? r̂ij� � �dj ? r̂ij�
r3 , (7)

where �di � m�li , m is the dipole strength of a unit loop
around a plaquette, r � j�rijj, where �rij � �ri 2 �rj , and
r̂ij is the unit vector along �rij. If �li were dimensionless,
then the energy of the system would not be extensive. To
evaluate the dimension of �l note that L6�l	2�j3 � �L�j�3

as required by the extensiveness of the free energy. Thus
�l	 � L23�2 and t � j3L23�2. The dynamic exponent at
Tc, where j � L, in this case is zMC � 3�2, which is
consistent with the computer simulation results.

For the short range case the binding energy is given by

bH � b
X

i

�ni ? �ni � b
X

i

� �= 3 �di� ? � �= 3 �di� . (8)

Requiring extensivity, i.e., �l	2j22L3 � �L�j�3, yields
�l	 � j21�2. From (6) we get t � j5�2 which at Tc scales
as L5�2. The dynamic exponent is zMC � 5�2, which is
consistent with the computer simulation results [17].

Critical dynamics of the dipole gas model.—We will
now derive the governing stochastic partial differential
equation that describes the long wavelength critical dy-
namics of the superconductor. Our strategy will be to first
derive the continuum limit of the Hamiltonian (2), and then
impose relaxational dynamics. We will find that the results
for z are not the same as our results for zMC. This is be-
cause the Monte Carlo time step does not correspond to the
physical time step. This is explained below. Let us first
look at the continuum limit of the short range case. By
reintroducing the coupling constants and the lattice spac-
ing, a, we write the Hamiltonian HV for the vortex vari-
ables as

HV � J

µ
2p

l0

a

∂2 X
i

� �= 3 �li � ? � �= 3 �li� . (9)

By converting the sum to an integral,

HV � 2�J�a3�
µ
2p

l0

a

∂2 Z
d �r ��� �= 3 �l��r���� ? ��� �= 3 �l��r���� .

(10)

In the limit a ! 0, Ja23 ! J̃ and l0�a ! l̃0. Re-
laxational dynamics is governed by the time-dependent
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Ginzburg-Landau equation (TDGL), which in this case is

≠�l
≠t

� GJ̃�2pl̃0�2���=2�l 2 �=� �= ? �l���� 1 �h , (11)

where h is a white noise, satisfying the fluctuation dis-
sipation theorem with �ha��r�� � 0 and �ha� �r 0�hb ��r�� �
2GkBTdabd��r 0 2 �r�. The TDGL equation is similar to
the diffusion equation and is expected to yield a dynamic
exponent of z � 2, in mean-field theory, with small cor-
rections due to fluctuations. The linearity of the TDGL in
this case reflects the fact that only unit vortices are consid-
ered in the analysis.

In the long range case, taking the continuum limit, we
obtain

HV � J̃�2p�2
Z

d �r 0 d �r
��� �= 3 �l��r 0���� ? ��� �= 3 �l��r����

j �r 0 2 �rj

3 exp�2j�r 2 �r 0j�l0	 , (12)

where the infinite self-energy has been subtracted, and the
screening length l0 is taken to be finite. To relate this to the
dipole-dipole interaction used in our analytic model of
the simulations, consider a cubic lattice, as before, on
whose vertices sit variables �di , and take l0 � `. By
replacing 2p

p
J̃ �l��r� �

P
i

�did��r 2 �ri�, one can perform
the integrals over �r and �r 0, to recover the expression in (7).
The actual TDGL equation for the long range case reads

≠�l��r�
≠t

� GJ̃�2p�2
Z

d �r 0 =2�l��r 0� 2 �=��� �= ? �l��r 0����
j �r 0 2 �rj

3 exp�2�j�r 2 �r 0j�l0�	 1 �h , (13)

Let us first take the case L ! ` with l0 finite but large.
The dynamic exponent in this case is 2, because the kernel
effectively renormalizes the time scale in a way that is
independent of system size. If we took the two limits
L ! ` and l0 ! ` in the opposite order, as was done
in the computer simulations, the exponential factor would
not be present, and the dynamics would be independent of
L. Hence the dynamic exponent would then be z � 0.

Nature of the long range case.—The rather curious
result of z � 0 is obtained for the situation where the
screening length is sent to infinity before taking the ther-
modynamic limit. Whether the interaction is considered
short or long range depends on what is being compared.
Physically the short range case describes the situation
where l0 is much smaller than the intervortex spacing
ly . This is indeed captured in the simulations by setting
l0 � 0. Physically the long range case describes the situ-
ation where L ¿ l0 ¿ ly. This is not captured by set-
ting l0 � ` with L finite.

Reconciliation with the lattice model simulations.—The
critical dynamics of the lattice simulations and the con-
tinuum analysis above do not apparently agree. We will
now show that this is because the time step in the simu-
lation does not correspond to the physical time step. The
reason is that from the definition of the loop variable �li

the net electric field at time t is Ea�t� �
P

i la
i dP�la

i 	�dt.
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In the simulations, and in (4), this has been replaced
by Ea�tMC� �

P
i dP�la

i 	�dtMC, where tMC denotes the
Monte Carlo time and la

i � 61, 0 only. However in the
long range case and in the short range case at Tc, where
j � L, �l	 depends on L. Hence the physical time is re-
lated to the Monte Carlo time by t � tMC�l	 so that the
relaxation time is actually

t � L3�l	2�aa
i . (14)

The dynamic exponents for the lattice model are then
z � 2 for the short range case and z � 0 for the long range
case, in agreement with the analytic calculation based on
the continuum limit equations of motion. We see that the
simulation result zMC � 3�2 or equivalently its corrected
form z � 0 arise from taking the thermodynamic limit and
the long range of interaction limits in the incorrect order.
With this correction to the results of the simulation, the
results no longer are consistent with those experiments
reporting z � 1.5.

Experimental ramifications.— In experiments per-
formed on bulk superconductors, one would expect the
short range limit of the model above to apply, provided
that the interaction range is shorter than the system
size. In such systems, as long as diffusive dynamics for
the vortex degrees of freedom is applicable, a dynamic
exponent of 2 is predicted by the model above.

What then could be the origin of the behavior z � 1.5,
if confirmed, in some experiments? There are at least two
possible avenues for further investigation into the true na-
ture of the critical dynamics in these systems. The first is
to seek experimental evidence for the existence of hydro-
dynamic modes which might account for the observed
model E dynamics in transport properties. The 41 meV
peak observed in neutron scattering data is one possible
candidate [22] although it does not seem to occur near
the origin, while certain interpretations of the peak-dip-
hump structure seen in angle-resolved photoemission spec-
troscopy are also suggestive of the existence of a collective
mode in the system [23]. A second possibility is to study
the crossover from model E to model A dynamics as the
effective coupling of the condensate with the electromag-
netic field tends towards zero (equivalently, one can study
the crossover by sending the plasmon gap to zero).

In conclusion, we have explained the simulation results
for the critical dynamics of the superconducting transition
in zero field, and shown that in fact they are consistent with
expectations based on the TDGL. An extension of this
analysis to two dimensions will be presented elsewhere.
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