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Crossover Scaling in Dendritic Evolution at Low Undercooling
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We examine scaling in two-dimensional simulations of dendritic growth at low undercooling, as well
as in three-dimensional pivalic acid dendrites grown on NASA’'s USMP-4 isothermal dendritic growth
experiment. We report new results on self-affine evolution in both the experiments and simulations.
We find that the time-dependent scaling of our low undercooling simulations displays a crossover
scaling from a regime different than that characterizing Laplacian growth to steady-state growth.
[S0031-9007(99)09307-2]

PACS numbers: 68.70.+w, 05.70.Ln, 64.70.Dv, 81.30.Fb

Recent computational and experimental advances ition, with constant flux, at each time. They demonstrated
dendritic growth offer a realistic prospect for a first that the dendrite tip position grows with the'3 power
principles understanding of solidification microstructureof time, whereas the width grows with th¢®2power, re-
formation. Early experiments [1,2] by Glicksman and sults which were consistent with subsequent experiments
co-workers on succinonitrile (SCN) provided the firstin Hele-Shaw flow [26].
benchmarks for theoretical models of dendritic growth. In this Letter we explore dendritic growth dynamics
Comparison of experiments with theory has been difat low undercooling, using the full diffusion equation
ficult, however, since experiments were influenced bydynamics. We find that the time-dependent evolution
convection effects and performed at low undercoolingof 2D dendrite profiles is self-affine in time, generalizing
using materials with low anisotropy, parameters forthe results of Ref. [27] for the case of growth with a
which computation is difficult. Such calculations cannonconstant flux. Underlying this scaling behavior is a
nevertheless be performed in two dimensions (2D) withpower law dependence on time of the dendrite tip position
state-of-the-art numerical methods combining so-callednd maximum dendrite width. We find that scaling of
phase-field models [3—13] and adaptive-mesh refinemerthese quantities displays a crossover from a growth regime
[14-16]. Inthe most recent round of experiments [17,18[different from that of Hele-Shaw flow to one characterized
Glicksman and co-workers have reported observations oby steady-state tip growth. Meanwhile, comparison of our
pivalic acid (PVA), whose higher anisotropy brings thelow undercooling simulations with microscopic solvability
benchmarks closer to the parameter range of theoreticétheory gives good agreement for the value of the so-
computations. called stability parameter. We also examine scaling in

Predicting dendritic growth theoretically has focused on3D dendrite data on pivalic acid obtained from NASA's
the tip speed and shape in the steady state. Simulation$SMP-4 isothermal dendritic growth experiment (IDGE),
in 2D by Karma and Rappel [19] and subsequently ouralso finding self-affine scaling in the global time-dependent
selves [15] have convincingly shown that the dynamicallyPVA dendrite profiles.
selected steady state is indeed the fastest of the discreteThe simulated dendrites are modeled using the phase-
set of allowed needle crystals, as predicted by solvabilfield model employed in [19]. Temperatufeis rescaled
ity theory [20—24]. However, at low undercoolings theto U = cp(T — Ty)/L, wherecp is the specific heat at
diffusion length is so large that the time needed for eacltonstant pressuré, is the latent heat of fusion, arfd, is
dendritic arm of a growing crystal to be in isolation from the melting temperature. The order parameter is defined
the others becomes much longer than any realistic simuldy ¢, with ¢ = 1 in the solid, andp = —1 in the liquid,
tion time [15]. This regime, where dendrite arms cannotand the interface defined by = 0. In what follows
simply translate at a uniform speed because of their mutudime is rescaled by the time scatg characterizing atomic
interactions, was first systematically analyzed by Almgrermovement in the interface, and length by the length scale
et al. [25], who used solvability theory to explore the caseW, characterizing the width of the liquid-solid interface.
when the temperature field strictly obeys Laplace’s equaThe model is given by
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whereD = a7y/W3, a is the thermal diffusivity, and | from PVA dendrites. These experiments were performed
controls the coupling ot/ and ¢». Anisotropy has been by four of the authors (LaCombe, Lupulescu, Koss and
introduced in Egs. (1) by defining the width of the in- Glicksman) during NASA’s USMP-4 isothermal dendritic

terface to beW (n) = WoA(n) and the characteristic time growth experiment. This experiment is described in detail
by 7(i1) = 19A%(n) [19%,4whe5eA(ﬁ) € [0,1],andA(7) =  elsewhere [18]. The IDGE experiment is designed to study
(1 -3¢l + 1i€36 %] The vectornn = (¢,& +  dendrites grown under microgravity conditions, where

¢.,9)/(¢2 + $2)V/2 is the normal to the contours af, transport in this particular process is considered to be con-

and ¢, and ¢, represent partial derivatives with respecthCtiO” limited. The crygtals are grown in an ur?dercoolled
tox andy. The constant parametrizes the deviation of Melt, controlled to within 0.001 K. Growth is moni-
W (i) from W,. We expect the results to be similar for tored thermometrically, while images are obtained from
other definitions of anisotropy [28]. The parameters oftWO perpendicular directions using video and still cam-
Egs. (1) are related to the appropriate Stefan problem u§'as (electronic and fllm). Expe_rlmental results presented
ing the relationships given in [19]. In particuld¥, 7, A, here were compared with four m_dependent data subsets
andD may be chosen to simulate an arbitrary, anisotropidor dendrites grown at undercoolings of 0.58, 0.63, and
capillary lengthd(i1), and interface attachment coefficient 0-47 K. We present the results from experiments corre-
B(#), which we chosen here @ = 0, a limit appropriate spondingtdA = 0.052. These data were captured at times
for SCN and PVA. 1 = 4248, 1, = 62.73, andz; = 82.98 sec after the den-
Simulated dendrites were computed by solving Egs. (151rite was detected. The anisotropy for PVA was estimated
using the adaptive-grid method of Refs. [15,16]. Simu-at€pva = 0.025 [29]. . .
lated dendrites were grown in a 2D quarter-infinite space We found the individual primary arms of our simulated
using zero-flux boundary conditions along the sides offendrites to be self-affine, beyond some transient time,
the system. Growth was initiated by a small quarte@t &ll undercoolings examined. Figure 1 shows the (
disk of radiusR, centered at the origin. The preferred dependent) scaling profile for 2D dendrites grown at
growth directions are along the and y axes, making A = 0.05 and A =025, respectively. The global
these the directions of growth of dendrite branches. Thé&caling profile is obtained by scaling thedirection by
order parameter is initially set to its equilibrium value (¥ — ¥5)/Xmax, WhereXp.(z) is the distance from the tip
bo(¥) = —tanH(I¥| — Ry)/+/2] along the interface. The xiip(#) to the baser,(r) of the dendrite arm, and the

initial temperature decays exponentially frotn= 0 at  direction by y/Ym (1), where Yu. (1) is the maximum

% — . Simulation data presented in this paper wereédM. The tip and transverse directions were found to scale

obtained for three undercoolingsy = 0.25, 0.1, and
0.05. Details of these data are presented in Table I.
The two data sets foA = 0.1 correspond to different
minimum grid spacingxm;, [15,16]. Seed radii used 4=0.05 computation: p=0.73, y=0.43
in our simulations wereR, = 8.5, 15, 30, and30 for
A = 0.25, 0.1(A), 0.1(B), and0.05, respectively. In all tor
casesR is smaller than the thermal diffusion length by a
factor of 20 or greater.

The results of our low undercooling simulations are ¥ oof
also contrasted here with new experimental data obtained

2.0

TABLE I. Parameters for simulated dendrites. The tirhe= -1or
255622.4.
A € A Xmin A[ D du Lx Lv A=0.25 computation: p=0.97, y=0.55
- 20 - .
0.25 0.05 0.78 0.048 13 0.043 12800 6400 000 " xexgtt
0.1(A) 0.05 0.78 0.08 13 0.043 102400 51200
0.1(B) 0.05 1.56 0.08 30 0.01846 102400 51200 FIG. 1. Comparison of scaled dendrite profiles for= 0.05

0.05(r < ¢*) 0.025 1.56 0.03 40 0.01385 102400 51200 andA = 0.25. For A = 0.25, nine times are plotted, spaced

0.05( > *) 0.025 0.78 0.03 40 0.01385 102400 51200 between28643 < r < 66083. For A = 0.05, there are six
times in the rang@€22 022 < t < 279 622.
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asXmax ~ 1P andYmax ~ t7, where forA = 0.05, 0.14, The parametersLp and 7p are effective diffusion
0.1B, and0.25; B = 0.73, 0.73, 0.78, and0.97; and length and time scales characterizing the intermediate
v = 043, 0.43, 045, and0.55, respectively. For the regime and are fit to give collapse of thé,.x and
A = 0.25 data, which at late times contained sidebranch¥,,,, data. The data fo#x(z) show a crossover scal-
ing induced by lattice noise, we defing,.,(r) using ing from fit to approximatelyFx(z) ~ z %% at early
the meaninterface position, obtained by smoothing thetimes to Fx(z) ~ z %% in the steady-state regime.
data. This definition of the sidebranch envelope givesThe crossover inFy(z) is given by Fy(z) ~ z7%97 at
different results than using the maximum of the sidebrancismall z to Fy(z) ~ z*% at large arguments ofy(z).
envelope [30,31]. Exponent errors were approximately-0.02, except
At low undercooling, long-lived transient interactions for the A = 0.25 data at late time, where they were
between neighboring primary dendrite arms causes theit0.05. These asymptotic limits are demonstrated by the
velocity and tip radius to deviate (within simulation time leveling off of Fx(y) and Fy(x) as y = t/7p becomes
scales) from their steady-state values predicted by solvdarge.
bility theory [15]. However, we do find that thsta- Our simulations are in a regime where the dendrite
bility parametero* = 2doD/VR?, whereV andR are, is much smaller than the diffusion length. However,
respectively, the time-dependent velocity and tip radiuswe do not observe the early-time scaling described by
agrees well with the value predicted by solvability the-Almgren et al. [25] since their calculations assume that
ory. Figure 2 showsr* vs time from our simulations at dendrites are grown with @&onstantflux, whereas in
A = 0.25, 0.1, and0.05. Error bars were estimated using our simulations the far field is diffusive with a speci-
AV, the fluctuations in velocity, and R, deviations in fied small undercooling. To illustrate this difference,
radius of curvature. The radius was obtained by fittinglet us assume that the rate of change of solid fraction
to a second order polynomial near the tip. Deviationsevolves as” ~ t/, whereby the solidified are& ~ '/,
in the fit gave an estimate fohR. Data for A = 0.1 SinceXmax ~ t#, Ymax ~ 17, A ~ Xmax Ymax, and sol +
set B, omitted for clarity, converge to approximately the f = 8 + y. SinceVR? = const, we obtain the scaling
sameoc™ as theA = 0.1 setA data but display somewhat relation S(f,8) = 4f — 58 + 3 = 0. Our early-time
larger fluctuations around the mean, due to the larger griédxponents gives(0.18,0.75) = —0.03 *+ 0.1. In the late-
spacing used. time regime,§(0.52,0.97) = 0.23 = 0.22. The late-time
The time-dependent behavior of the tip position anderror in S arises when we estimatg by smoothing the
lateral growth rate of our 2D dendrites are characterizediendrite profiles fold = 0.25 (e = 0.05). For compari-
by the scaling ofX.x () and Y.« (). Figure 3 shows son, we produced data fd&x = 0.25, € = 0.025 (not in
Xmax and Y.« scaled onto respective crossover functionsTable 1), and which were free of spurious sidebranches,

of the form obtainingYmax ~ %°.
_ ! Self-affine time-dependent scaling was also found in
Xmax(t)/Lp = — Fx(t , 2 ; .
max (0)/Lp ™ x(t/7p) (2) the mean dendrite profiles of the new 3D IDGE PVA
and data. Figure 4 shows the scaled PVA datafer 11, ,, 3.
1/2
t
Ymax()/Lp = (T—> Fy(t/1p). 3
D

O Bot. F_Y(x) A=0.25
O Bot. F_Y(x) A=0.1 set A
< Bot. F_Y(x) A=0.1set B
A Bot. F_Y(x) A=0.05
O Top. F_X(x) A=0.25
O Top. F_X(X) A=0.1set A

—— 0_A=0.05 solvability theory
fffff o +0.04 A=0.1 solvability theory
015 ___ 0 +0.02 A=0.25 solvability theory
O 0 A=0.05 simulation 10 |
0 0 +0.04 A=0.1 set A simulation
2 ¢ +0.02 A=0.25 simulation
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FIG. 2. Simulation data of* vs time forA = 0.25, 0.1 (set FG. 3. Crossover scaling functions describing lateral width of
A), and0.05. For clarity, theA = 0.1 and0.25 data have been simulated dendrite arnk,,,x and tip-to-base distancg,,.,, for
shifted along the axis by0.04 and0.02, respectively. A = 0.25, 0.1 (setsA andB), and0.05.
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