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We study the evolution of solidification microstructures using a phase-field model
computed on an adaptive, finite element grid. We discuss the details of our algorithm
and show that it greatly reduces the computational cost of solving the phase-field
model at low undercooling. In particular, we show that the computational complexity
of solving any phase-boundary problem scales with the interface arclength when us-
ing an adapting mesh. Moreover, the use of dynamic data structures allows us to sim-
ulate system sizes corresponding to experimental conditions, which would otherwise
require lattices greater than 217× 217 elements. We examine the convergence proper-
ties of our algorithm. We also present two-dimensional, time-dependent calculations
of dendritic evolution, with and without surface tension anisotropy. We benchmark
our results for dendritic growth with microscopic solvability theory, finding them
to be in good agreement with theory for high undercoolings. At low undercooling,
however, we obtain higher values of velocity than solvability theory at low under-
cooling, where transients dominate, in accord with a heuristic criterion which we
derive. c© 1999 Academic Press

I. INTRODUCTION

Modeling solidification microstructures has become an area of intense study in recent
years. The properties of large-scale cast products, ranging from automobile engine blocks to
aircraft components and other industrial applications, are strongly dependent on the physics
that occur at the mesoscopic and microscopic length scales during solidification. The main
ingredient of the solidification microstructure is the dendrite, a snowflake-like pattern of
solid around which solidification proceeds. The microscopic properties of such cast products
are determined by the length scales of these dendrites, and for this reason understanding the
mechanisms for pattern selection in dendritic growth has attracted a great deal of interest
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from the experimental and the theoretical communities. In particular, a great deal of research
has been undertaken to understand such issues as dendrite morphology, shape, and speed.
Experiments on dendrite evolution by Glicksman and co-workers on succinonitrile (SCN)
[1, 2], and more recently pivalic acid (PVM) [3], as well as other transparent analogues of
metals, have provided tests of theories of dendritic growth and have stimulated considerable
theoretical progress [4–6]. These experiments have clearly demonstrated that in certain
parameter ranges the physics of the dendrite tip can be characterized by a steady value
for the dendrite tip velocity, radius of curvature, and shape. Away from the tip the time-
dependent dendrite exhibits the characteristic sidebranching as it propagates.

The earliest theories of dendritic growth solved for the diffusion field around a self-similar
body of revolution propagating at constant speed [7, 8]. In these studies the diffusion field is
found to determine the product of the dendrite velocity and tip radius, but neither quantity by
itself. Adding capillarity effects to the theory predicts a unique maximum growth speed [9].
Experiments, however, have shown that these theories do not represent the correct operating
state for real dendrites.

The introduction of local models of solidification brought further insight to the steady
state dendrite problem [10–13]. These models describe the evolution of the interface, in-
corporating the physics of the bulk phases into the governing equation of motion of the
interface. A remarkable breakthrough of these models was to show that a steady-state den-
drite velocity is obtainedonly if a source of anisotropy (e.g., in the interfacial energy)
is present during dendritic evolution. The dendrite steady-state tip velocities appear in a
discrete rather than continuous spectrum of values, making the role of anisotropy of great
importance in the description of the dendrite problem, in both the local models and the
full moving boundary problem [6, 14, 15]. It was further shown that only the fastest of a
spectrum of steady-state velocities is stable, thus forming the operating state of the dendrite.
This body of theoretical work is generally known asmicroscopic solvability theory.

The formation of sidebranches is another important aspect of dendritic growth that has
received considerable attention. The formation of sidebranches is widely believed to be
caused by thermal fluctuations, which enters solidification models in the form of random
noise possessing specific features [16–18]. The manner in which thermal noise is amplified
may depend on the overall dendrite morphology. It was shown that noisy fluctuations
traveling down a paraboloid of revolution do not produce sidebranch amplitudes consistent
with experiments [16], while fluctuations traveling down an initially missile-shaped dendrite
amplify into sidebranches comparable to some experiments [18]. Karma also investigated
the addition of interface fluctuations [17]. However, this source of noise only becomes
relevant at high velocities.

The foundation around which most theories of solidification are based is the time-
dependent Stefan problem. This theory describes the evolution of the thermal or solutal
diffusion field around the solidification front, along with two accompanying boundary con-
ditions. The first boundary condition relates the velocity of the moving front to the difference
in thermal fluxes across the solid–liquid interface. The second, called the Gibbs–Thomson
condition, relates the interfacial temperature to the the thermodynamic equilibrium temper-
ature, the local interfacial curvature, and interface kinetics. The interface kinetics term adds
a nonequilibrium correction to the interface temperature, usually assumed to be in local
equilibrium for a given curvature. Solving the Stefan problem numerically has traditionally
involved front tracking and lattice deformation to contain the interface at predefined loca-
tions on the grid [19, 20]. This method is generally complicated to implement accurately
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and requires much effort. Moreover, it can be inefficient in handling coalescence of two or
more interfaces.

The solution of the Stefan problem has been made more tractable with the introduction
of thephase-fieldmodel. The phase-field model avoids this problem of front tracking by
introducing an auxiliary continuous order parameterφ(r) that couples to the evolution of
the thermal or solutal field. The phase field interpolates between the solid and liquid phases,
attaining two different constant values in either phase (e.g.,±1) with a rapid transition
region in the vicinity of the solidification front. The level set ofφ(r)= 0 is identified with
the solidification front, and the subsequent dynamics ofφ are designed to follow the evolving
solidification front in a manner that reproduces the Stefan problem [21–25, 30, 26–29].

The price to be paid for the convenience of the order parameter is the introduction of
a new length scaleW which represents a boundary layer over which the order parameter
changes sign. This distance is referred to as the interface width and does not appear in
the Stefan problem. As such, one requirement of the phase-field model is to recover the
Stefan limit in a manner that is independent of the interface width asW approaches some
appropriate limit. Considerable work has been done to relateW to various parameters of
the phase-field model in order to establish a mapping between the phase-field model and
the Stefan problem [22, 30, 31]. While the formal nature of these mappings does not seem
to be very sensitive to the precise form of the phase-field model [31], different asymptotic
limits of the phase-field parameters can lead to widely varying complexity in the numerical
implementation.

The introduction of the interface widthW makes the phase-field model prohibitively
expensive to simulate numerically for large systems, since the grid spacing must be small
enough everywhere that the phase-field model converges to the the sharp interface limit
[22, 30]. Caginalp and Chen [32] showed rigorously that the phase-field model converges
to the sharp interface limit when the interface width (and hence the grid spacing) is much
smaller than the capillary length. While this result is necessary to establish that the phase-
field model does map onto the Stefan problem, the parameter values required to realize the
asymptotic limit can be computationally intractable. Experimentally, the physical sizes re-
quired to contain realistic microstructures can be many times the size of the thermal diffusion
length, which in turn can be orders of magnitude greater thanW. Thus, since1xmin<W,
computing in the limit of aW→ 0 does not allow one to simulate experimental systems.

Recently Karma and Rappel [30] presented a different asymptotic analysis performed in
powers of the ratio of the interface width to the diffusion lengthα/Vn, taken to be equal
in both phases. Their procedure offers two computational advantages. The first is that is
allows one to simulate the phase-field model with zero interface kinetics,withoutthe need to
makeW→ 0. Specifically, this limit, as well as a nonzero kinetics limit, can be simulated
with an interface widthW (and hence the grid spacing) of order the capillary length, a
much more tractable regime. Simulating solidification microstructures in the limit of zero
interface kinetics is important because most experiments performed at low undercooling
in materials such as succinonitrile are in this limit [2]. Karma and Rappel tested their
asymptotics by comparing their simulations to the results of microscopic solvability theory,
finding excellent agreement down to dimensionless undercoolings as low as 0.25.

A recent extension of Karma and Rappel’s analysis by Almgren [33] also promises to
allow similar asymptotics to be performed on a two-sided model of solidification [33],
i.e., when the diffusivities in the solid and liquid differ, relevant in the study of directional
solidification of binary mixtures.
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The theory of level sets [34, 35] has also recently reemerged as another effective tool
that shows great potential in modeling dendritic growth. While related to the phase-field
model, level-set theory does not require the presence of a thin interfacial withW, thus
greatly reducing the stringent grid requirements posed by conventional phase-field models.
To date, however, level-set methods have not been benchmarked with solvability theory or
other theoretical prediction for Stefan problems.

While expanding the horizon of solidification modeling, phase-field modeling has still
been limited to small systems sizes, even when solved by adaptive algorithms [36]. The
main problem is the presence of an interface region with a minimal length scale that must be
resolved. For typical microstructures grown at dimensionless undercooling of 0.1 or less,
the ratio of the system size to this minimal grid spacing can be greater than 217. With this
restriction most numerical methods will naturally fail. What is needed to go beyond this
limitation is an effective adaptive technique [36–39] which dynamically coarsens the grid
spacing away from the front.

In this paper we present a new, computationally efficient adaptive-grid algorithm for
solving a class of phase-field models suitable for the study of phase-boundary evolution.
We study two-dimensional dendritic solidification modeled using two coupled fields, one for
the order parameter and the other for the thermal field. Our algorithm effectively combines
and implements ideas of adaptive-mesh refinement with ideas of dynamic data structures,
allowing us to enlarge the window of large-scale solidification modeling.

The outline of this paper is as follows: In Section II we introduce the physical model to
be examined, summarizing its properties and its various limits. In Section III we present a
detailed description of our algorithm. In Section IV we present results on CPU scalability of
our algorithm and examine issues of grid convergence and grid anisotropy on our solutions.
In Section V we present results of dendritic growth with and without the presence of
anisotropy in the surface energy. We show that for high undercooling, dendrites grown with
our method converge to tip speeds in agreement with microscopic solvability theory. At
low undercooling, however, we do not find agreement with steady state solvability theory,
owing to long-lived transients in the thermal field evolution. In Section VI we conclude and
discuss our results.

II. THE PHASE-FIELD MODEL

We model solidification in two dimensions using a standard form of phase-field equa-
tions which couple a thermal field to an order parameter fieldφ via a double-well potential
[22, 30]. We begin by rescaling the temperature fieldT byU = cP(T − TM)/L, wherecP is
the specific heat at constant pressure,L is the latent heat of fusion, andTM is the melting tem-
perature. The order parameter is defined byφ, where we defineφ= 1 in the solid phase and
φ=−1 in the liquid phase. The interface is defined byφ= 0. We rescale time throughout by
τ0, a time characterizing atomic movement in the interface. Length is rescaled byWo, a length
characterizing the liquid–solid interface. With these definitions, the model is written as

∂U

dt
= D∇2U + 1

2

∂φ

∂t

A2(En)∂φ
dt
= ∇ · (A2(En)∇φ)+ g′(φ)− λU P′(φ) (1)

+ ∂

∂x

(
|∇φ|2A(En)∂A(En)

∂φ,x

)
+ ∂

∂y

(
|∇φ|2A(En)∂A(En)

∂φ,y

)
,
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whereD=ατ0/W2
o andα is the thermal diffusivity. The functionf (φ,U ; λ)= g′(φ) −

λU P′(φ) is the derivative of the double-well potential with respect toφ and couples the
U andφ fields via the constantλ. The primes on the functionsg(φ) and P(φ) denote
derivatives with respect toφ. We useg′(φ)=φ(1− φ2) andP′(φ)= (1− φ2)2, which are
the same functional forms used in Ref. [30]. Following Karma and Rappel [30], anisotropy
has been introduced in Eqs. (1) by defining the width of the interface to beW(En)=WoA(En)
and the characteristic time byτ(En)= τ0A2(En), with A(En)∈ [0, 1] given by

A(En) = (1− 3ε)

[
1+ 4ε

1− 3ε

(φ,x)
4+ (φ,y)4
|∇φ|4

]
. (2)

The vector

En = φ,x x̂ + φ,y ŷ(
φ2
,x + φ2

,y

)1/2 (3)

defines the normal to the contours of theφ field, whereφ,x andφ,y are defined as the partial
derivatives ofφ with respect tox andy. The variableε parameterizes the deviation ofW(En)
from Wo and represents the anisotropy in the interface energy of the system. We note that
this definition of anisotropy is not unique [31], but we expect results to be similar for other
definitions of anisotropy.

In simulating the phase-field model we adopt the point of view that the order parameter
field φ is a computational tool whose main purpose is to eliminate front tracking. As such
we would like to simulate the model given by Eqs. (1) with the ratioWo/do (1/do in length
units defined above) to be as large as possible. At the same time we would like the behavior
of the model outside the boundary layer defined byφ to describe the Stefan problem as
closely as possible. To this end, we relate the parameters of the phase-field model according
to Ref. [30], valid in the asymptotic limitWo¿α/Vc, whereα/Vc is the diffusion length
andVc is a characteristic velocity of the front defined byφ.

The specific asymptotic limit we model is one where theU -field satisfies

∂U

∂t
= D∇2U (4)

everywhere away from the interface, while at the interface, the gradient ofU satisfies

Vn = D

(
∂U

∂En
∣∣∣∣
Ex−int

− ∂U
∂En
∣∣∣∣
Ex+int

)
, (5)

whereVint is the velocity normal to the interface, denoted byExint. The notation+ and−
denotes the solid and liquid side of the interface, respectively. The description of the Stefan
problem is completed by the Gibbs–Thomson condition and the interface kinetics condition

U (Exint) = −d(En)κ − β(En)Vn, (6)

whered(En) is the capillary length,κ is the local curvature, andβ(En) is the interface attach-
ment kinetic coefficient, all assumed to be in dimensionless form according to the above
definitions. The capillary length is related to the parameters of Eqs. (1) by

d(En) = a1
Wo

λ

[
A(En)+ ∂2

θ A(En)], (7)
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wherea1= 0.8839 for the particular form of the free energy defined in Eqs. (1) [30] andθ

is the angle betweenEn and thex-axis. The kinetic coefficient is given by

β = a1τ0

λWo

[
1− λa2

D

]
, (8)

wherea2= 0.6267 for our choice of the free energy functional [30]. One remarkable feature
of Eqs. (7) and (8) is thatWo, τ0, andλ can be chosen to simulate arbitrary values ofβ, for
Wo of orderdo. In particular, settingλ= D/a2 allows us to compute the phase-field model
in the limit of the Stefan problem [30], whereβ = 0. This is also an appropriate value for
SCN, especially at low undercooling.

Equations (7) and (8) forβ anddo can be related to a wide class of free energies via the
parametersa1 anda2 [30], which are related to integrals that depend ong(φo), P(φo), and
dφo/dx, whereφo is the lowest order description of the order parameter fieldφ and is a
solution of the equation

∂2φo

∂x2
− dg(φo)

dφo
= 0. (9)

We also note that these asymptotics are related to a more general asymptotic analysis
performed by Almgren [33], which relates the parameters of the phase-field model to those
of the Stefan problem in the case of unequal diffusivities in the solid and the liquid phases.
In this case, the asymptotics provides an additional set of constraints on the admissible
functionsP′(φ), g′(φ), and hencea1 anda2.

III. THE ADAPTIVE-GRID ALGORITHM

The main computational challenge of simulating Eqs. (1) involves resolving two com-
peting length scales: the lattice spacingdx on which the simulation is performed and the
physical size of the systemL B. Even with improved asymptotics,dx must remain rela-
tively small, whileL B must be extremely large in order to make possible computations of
extended solidification microstructures. Moreover, the main physics of solidification (and
the evolution of most phase-boundary problems) occurs around an interface whose area is
much smaller than the full computational domain. Near this interface the order parameter
varies significantly, while away from the interface variations inφ are small. Meanwhile,
the thermal fieldU extends well beyond the interface and has much more gradual variation
in its gradients, permitting a much coarser grid to be used to resolveU . The most obvious
manner by which to overcome this problem is to use a method that places a high density of
grid points where the interface ofφ or U varies most rapidly and a much lower grid density
in other regions. Furthermore, the method must dynamically adapt the grid to follow the
evolving interface [36–39], while at the same time maintaining a certain level of solution
quality.

We solve Eqs. (1) using the Galerkin finite element method on dynamically adapting
grids of linear, isoparametric quadrilateral and triangular elements. The grid is adapted
dynamically based on an error estimator that utilizes information from both theφ andU
fields. We wrote our code in FORTRAN 90 (F90), taking advantage of the efficiency of
FORTRAN 77 while using advanced C-like features, such as data structures, derived data
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types, pointers, dynamic memory allocation, and modular design, to conveniently adapt the
grid and the solution fields.

In the broadest sense, our algorithm performs functions that can be divided into two
classes. The first deals with the establishment, maintenance, and updating of the finite
element grids, and the second with evolvingφ andU on these grids, according to Eqs. (1).
We presently describe these classes, the adaptive grids, the finite element procedure, and
the interconnections of these processes.

A. The Finite Element Grids

The first class of functions in our algorithm centers around maintaining a grid of finite
elements on a data structure known as aquadtree[40–42], which replaces the standard
concept of a uniform grid as a way of representing the simulational grid. The quadtree is a
tree-like data structure with branches up to a prespecified level. Branches of the quadtree are
themselves data structures that contain information analogous to their parent, from which
they branched, but one level down. Figure 1 illustrates the structure of a quadtree as well as
the relation between elements at different levels of refinement. Every entry on the quadtree
contains information pertaining to a four-noded isoparametric quadrilateral finite element
[43]. This information includes the following:

• values ofφ andU at the four nodes;
• the nodal coordinates of the element;
• the level of refinement of the element on the quadtree;
• the value of the current error estimate;
• the element number, which contains information about the coordinates of the element

and its level of refinement;
• an array mapping the element’s four nodes onto the entries of a global solution array;
• pointers to the element’s nearest neighbors sharing a common edge and at the same

level of grid refinement;
• a variable that determines whether or not an element contains further subelements

which we termchild elements;

FIG. 1. An illustration of the quadtree element data structure. The first frame shows an element and four
child elements. Splitting of one of the children and one its children is shown, along with the branch evolution of
the quadtree. Branches with triangles indicate square elements which are bridged with triangular or rectangular
elements.
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• pointers to an element’s child elements;
• a pointer to theparentelement from which an element originates.

The elements of the quadtree can be refined by splitting into four child elements, each
sharing the same parent element one level down on the quadtree and each with its own
set of information, as outlined above. A parent element and it’s four child elements are
referred to as afamily. Refinement produces a finer mesh within the confines of the original
parent grid by bisecting each side, as shown in Fig. 1. Unrefinement, which consists of
fusing the four child elements back into the parent, has the opposite effect, locally creating
a coarser mesh. Both refinement and unrefinement proceed via dynamic memory allocation,
making our code scalable. We note that unrefinement can occur only if the child elements
do not possess further children of their own. Also, in order to avoid having regions of very
different refinement bordering each other, we impose the restriction that any two neighboring
quadrilateral elements may be separated by no more than one level of refinement (see Fig. 1).
We define the level of refinement of an element byle such that a uniform grid at a refinement
level le would contain 2le× 2le grid points in a physical domainL B× L B.

Cases where an element has no children, a missing neighbor, or no parent are handled by
null pointers. The latter case occurs only for the root of the quadtree.

All elements at a given level of refinement on the quadtree are “strung” together by a
linked-list of pointers, referred to asG-lists.There are as manyG-lists as there are levels
of refinement in the quadtree. Each pointer in theG-list points to (accesses) the location in
memory assigned to one element of the quadtree. The purpose of theG-list is to allow traver-
sal of the quadrilateral elements sequentially by level, rather than by recursively traversing
quadtree from the root down, a procedure which is memory intensive and relatively slow.

Alongside the main grid of quadtree elements, the code maintains two independent grids
representing special linear isoparametric triangular and rectangular elements. These el-
ements are used to connect the extra nodes that arise when two or more quadrilateral
elements of differing refinement levels border each other. These element types are referred
to asbridging elements.They are maintained as two linked lists of derived data types, one
containing information about triangular elements and the other rectangular. Elements of
both these grids include the following information:

• the values ofφ andT at the three nodes (four for rectangles) of the element;
• the nodal coordinates;
• node numbers that map the element’s nodes onto the global solution array.

The types of bridging triangles and rectangles that can occur are enumerable and are shown
in Fig. 2.

The main set of operations performed on the grids described above concern refinement
of the finite element mesh as a whole. The refinement process is performed only on the
quadrilateral mesh. The triangular and rectangular grids are established after this process
is completed (see Fig. 1). To refine the grid the code traverses the elements of the quadtree,
refining (unrefining) any element whose error function, discussed below, is above (below) a
critical valueσh(σl ). We also note that fusion of four quadrilateral elements can occur only
if all four of its children’s error functions are below the critical valueσl , whereσl <σh.
We found that ifσl = σh the grid sets into oscillations, where large numbers of elements
become alternatively refined at one time step, then unrefined at the next.

The processes described thus far are grouped into modules that encapsulate various related
tasks, and can cross-reference each other’s data and instructions. The module highest up
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FIG. 2. Illustration of all possible configurations requiring completion with triangular and/or rectangular
elements.

in the hierarchy contains the definition of the quadtree data structure and routines that
construct the initial uniform grid, refine and unrefine individual quadrilateral elements, and
set the initial conditions. Another module constructs theG-lists. It contains routines that
construct the initialG-list from initial uniform quadtree data structure, as well as add or
delete element pointers from theG-list as elements are created or deleted from the quadtree.
Another module accessing both the previous ones’ data structures has the role of creating the
triangular and rectangular element grids. It contains definitions for creating triangular and
rectangular element data structures and routines that search the quadtree, building the linked
lists of triangles and rectangles that make up these grids. The main program is contained in
its own module and contains the driver program that creates the initial grids,G-lists, and
triangular and rectangular element types. The driver program also sets into motion the final
link in the simulation, which evolvesφ andU and periodically adapts the dynamic grid by
calling procedures described above. A flowchart of these processes is shown in Fig. 3.

B. The Finite Element Formulation

The integration of Eqs. (1) is done by the final module in the code. This module performs
four main processes:

1. It maps the internal element node numbers to the indices of a global solution vector.
Theφ-field is mapped onto the odd numbers, (1, 3, 5,. . . ), while U is stored on the even
numbers of the global solution vector (2, 4, 6,. . . ).

2. It advances theU andφ-field vectors byNr time steps on the finite element grids
defined above.

3. It calculates an error function for each element of the quadtree, based on error
estimate of the quadrilateral elements.

4. It invokes routines in the modules described above to refine the grid according to
this error estimator.



274 PROVATAS, GOLDENFELD, AND DANTZIG

FIG. 3. A flowchart illustrating the algorithm program modules.

Steps 1–4 are repeated until a sufficient time evolution of the microstructure is established.
The variableNr is set such that the interface remains within the regions of fine mesh between
regriddings, which we typically choose to be 100 time steps. Step 1 involves searching all
elements, and their neighbors, and assigning each node a unique number that will have a
counterpart on a global solution vector.

The finite element discretization of Eqs. (1) is done using Galerkin’s weighted residual
method [43]. The method begins by assuming thatφ andU are interpolated within an
element as

φe =
N∑

i=1

φe
i Ni (x, y) Ue =

N∑
i=1

Ue
i Ni (x, y), (10)

whereφe
i andUe

i are the field values at theN nodes of the elemente. Our mesh uses
quadrilateral and triangular elements. For quadrilateral elements,N= 4 and the nodes are
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the four corner points of the element. For triangular elements,N= 3 and the nodes are on the
vertices of the triangle. The functionsNi (x, y) are standard linear interpolation functions
appropriate to the element being used [44] and satisfy

Ni (xj , yj ) = δi, j , (11)

whereδi, j is the Kroneker delta. We employ the isoparametric formulation, which implies
that the coordinates within an element are interpolated using the same shape functions used
in Eq. (10) to interpolate theφ- andU -fields. Rewriting the differential equations forφ
in Eqs. (1) asLφφ= 0, and of theU -equation asLUU = 0, the Galerkin method requires
that ∫

Äe

Ni (x, y)Lφφ
e(x, y) dx dy= 0∫

Äe

Ni (x, y)LUUe(x, y) dx dy= 0,

(12)

for i = 1, 2, 3, . . . , N, whereÄe represents the area of an elemente. Substituting Eqs. (10)
into Eqs. (12), we obtain two linear algebraic equations forφi andUi , i = 1, 2, 3, . . . , N in
the elemente.

We next define{8}e= (φ1, φ2, φ3, . . . , φN)
T and{U }e= (U1,U2,U3, . . . ,UN)

T , where
the superscriptT denotes transpose, making{8}e and {U }e column vectors. The linear
algebraic statement of the finite element form of Eqs. (1) then becomes

[Ĉ]({φ}e)d{φ
e}

dt
= ([M ] + [E]){φ}en + {F; λ}e

[C]
d{U }e

dt
= D[ A]{U }e+ 1

2
[C]

d{φ}e
dt

,

(13)

where the matrices [C], [C̃], [ A], [M ], and [E] and the vector{F; λ}e are given by

[C] =
∫
Äe

[N]T [N] dx dy, (14)

[Ĉ] =
∫
Äe

[N]T [N] A2(θ(φe)) dx dy, (15)

[ A] = −
∫
Äe

(
[N]T [Nx] + [N]T [Ny]

)
dx dy, (16)

[M ] = −
∫
Äe

(
[N]T [Nx] + [N]T [Ny]

)
A2(θ(φe)) dx dy, (17)

[E] = −
∫
Äe

(
[N]T [Nx] − [N]T [Ny]

)
A(θ(φe))ω(θ(φe)) dx dy, (18)

{F; λ}e =
∫
Äe

[N]T f (φe,Ue; λ) dx dy, (19)

where [Nx], [Ny] denote the partial derivatives of the vector of shape functions with respect
to x andy, respectively. The functionA is just Eq. (2) rewritten in terms of the angleθ that
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the normal to the interface makes with thex-axis. Specifically, defining

tanθ(φe) = ∂φe
,y

∂φe
,x

, (20)

then

A(θ(φe)) = (1− 3ε)

[
1+ 4ε

1− 3ε

(1+ tan4 θ)

(1+ tan2 θ)2

]
, (21)

whileω(θ) is proportional to the derivative ofA(θ) and is given by

ω(θ(φe)) = 16ε
tanθ(1− tan2 θ)

(1+ tan2 θ)2
. (22)

We use a lumped formulation for the matrices [C] and [Ĉ] [43]. In this procedure, the
row vector of shape functions, [N] in Eq. (14), is replaced by the identity row vector
[ I ]= [1, 1, 1, . . .]. The resulting matrix [C] then consists of identical columns, each of
which contains the elementNi (x, y) in the position of thei th row. A lumped term is then
defined as a diagonal matrix whose entries take on the value

Lc = 1

4

nodes∑
i=1

∫
Äe

Ni (x, y) dx dy. (23)

The use of a lumped matrix for [C] allows us to assemble a diagonal matrix for the left-
hand side of Eqs. (13), stored as a one-dimensional vector rather than the two-dimensional
matrices that would be required if we used the consistent formulation for the assembly of
the [C] matrices. The use of diagonalization is necessary since microstructures evolving at
low undercooling can produce interfaces with well over 105 elements. Storage of 2× 1010

matrices, needed if using a consistent formulation, would be impossible. We note that using
diagonalization to discretize our equations on a uniform finite element mesh recovers the
usual finite element discretization.

The global{φ} (obtained after assembly of the element equations in field in Eqs. (13))
is time stepped using a forward difference (explicit) time scheme. For each time step of
theφ-field, the globalU -field is then solved iteratively using a Crank–Nicolson scheme.
Convergence of{U }n+1 is obtained in a few iterations.

C. The Error Estimator

Regridding is based on an error estimator function, which is obtained following
Zienkiewicz and Zhu [44], based on the differences between calculated and smoothed
gradients of theφ andU fields. Specifically, we define thecomposite field

9 = φ + γU, (24)

whereγ is a constant. This is the simplest definition that allows theU -field to contribute to
the mesh refinement, along with theφ-field. The weightγ is chosen to amplify variations of
theU -field comparable to theφ-field. The selection ofγ is discussed in more detail below,
where we show that using only gradients of theφ-field in establishing the grid [36] can lead
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to large errors in calculations of tip velocity. Since it isφ andU that are being calculated,
and not their gradients, we do not expect the gradient of9 to be continuous across element
boundaries, due to the order of the interpolation used. Thus we expect the difference between
the calculated and smoothed (continuous across element boundaries) gradients to provide
a reasonable estimate of error. This method appropriately meshes regions of both steep
gradients and regions where theφ- andU -fields change rapidly.

We define the error estimator functionEe as

Ee= Eqs− Eqc, (25)

whereEqc andEqs are the calculated and smoothed gradients of9, respectively. The smoothed
gradients are calculated to be continuous across element boundaries. To determineEqs we
assume it to be interpolated in the same way as theφ- andU -fields, namely

Eqs = [N]{Qs}, (26)

where [N] is the row vector of element shape functions, and{Qs} is a 4× 2 matrix whose
columns represent the nodal values of fluxes of9 in thex- andy-directions, respectively.
To find {Qs} we use Galerkin’s method, minimizing the weighted residual∫

Äe

[N]T Ee dÄe =
∫
Äe

[N]T
(
[N]{Qs} − Eqc

)
dÄ = 0. (27)

The calculation is simplified by lumping the left-hand side of Eq. (27), leading to(∫
Äe

[N]T [1] dÄ

)
{Qs} =

∫
Äe

[N]T Eqc dÄ, (28)

where [1]= [1, 1, 1, . . . , N]. Assembling Eq. (28) for all quadrilateral elements yields an
equation for the smoothed gradients{Q}g of the global field9, at all element nodes, of the
form

[D]{Q}g = b, (29)

where [D] is a diagonal matrix, due to “mass” lumping, and{Q}g is aN× 2 matrix for the
global, smoothed flux. Diagonalization is employed to reduce computational cost [44]. We
have confirmed that our calculations are insensitive to the form of [D] by testing to ensure
grid convergence.

For the actual error updating on the elements of the quadtree we used the normalized
error defined by

E2
e =

∫
Äe
|(Eqs− Eqc)|2∑
e

∫
Ä
| Eqs|2

. (30)

The domain of integrationÄ in the denominator denotes the entire domain of the problem.
ThusE2

e gives the contribution of the local element error relative to the total error calculated
over the entire grid.

Figure 4 shows a snapshot at 105 time steps into the simulation of a thermal dendrite
computed with our algorithm. The figure showsφ and U as well as the current grid.
The dendrite is fourfold symmetric, grown in a quarter-infinite space, initiated by a small
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FIG. 4. A dendrite grown using the adaptive-grid method for1= 0.7, D= 2, ε= 0.05. Clockwise, beginning
at the upper right, the figures show contours of theU -field, the contourφ= 0, contours of theφ-field, and the
current mesh.

quarter disk of radiusRo centered at the origin. The order parameter is defined on an
initially uniform grid to be its equilibrium valueφo(Ex)=−tanh((|Ex| − Ro)/

√
2) along the

interface. The initial temperature decays exponentially fromU = 0 at the interface to−1
as Ex→∞. The parameters set for this simulation are1= 0.70, D= 2, dt= 0.016, andλ
chosen to simulateβ = 0. The system size is 800× 800, with1xmin= 0.4, and about half of
the computational domain in each direction is shown. Sidebranching is evident and arises
due to numerical noise. This simulation was completed in approximately 15 cpu-h on a Sun
UltraSPARC 2200 workstation.

IV. SCALABILITY AND CONVERGENCE PROPERTIES

OF THE ADAPTIVE-GRID ALGORITHM

In this section we present results that illustrate the convergence properties of solutions of
Eqs. (1) computed with our algorithm, the effect of grid-induced anisotropy of the adapting
mesh, and the speed increase obtained by using an adapting grid.

A. cpu Performance

We examined the cpu scalability of our algorithm as a function of system size by growing
dendrites in systems of various linear dimensionL B and measuring the cpu timeRa

t required
for the dendrite branches to traverse the entire system. Figure 5 shows a plot of these data
for a dendrite grown at undercooling1= 0.55 using the same parameters as in Fig. 4. The



SOLIDIFICATION MICROSTRUCTURES 279

FIG. 5. cpu time vs the system size, illustrating the computing time for a dendrite to move through the system
of linear dimensionL B using our adaptive mesh method.

minimum grid spacing has been set to1xmin= 0.4 in this data. Figure 5 clearly shows that
Ra

t ∼ L2
B. This relationship can be obtained analytically as follows.

The number of calculations performed, per simulation time step, is proportional to the
number of elements in the grid. This relationship is set in turn by the arclength of the
interface being simulated multiplied by the diffusion lengthD/Vn. This product defines
the arclength over which the highest level of refinement occurs. For a needle-like dendrite,
the arclength is approximatelyL B. Moreover, since the dendrite tip moves at a constant
velocity Vn,

Ra
t =

[
Ra

o D

V2
n1x2

m

]
L2

B, (31)

whereRa
o is a constant that depends on the details of the implementation of the algorithm

used to evolve Eqs. (1). The cpu time needed to compute the traversal time on a uniform
grid, Ru

t , is found, by the same analysis, to be

Ru
t =

[
Ru

o

Vn1x2
m

]
L3

B, (32)

whereRu
o also depends on the implementation but is likely to be smaller thanRa

o. Thus,
comparing our method with simulation on a uniform grid we obtain

lim
L B→∞

Ra
t

/
Ru

t =
1

L B
. (33)

For larger systems, the adaptive scheme should always provide faster CPU performance
regardless of implementation. Indeed, any method that uses a uniform grid of any sort
will eventually be limited by memory requirements asL B becomes large. The arguments
leading to Eq. (31) can also be generalized to any problem of evolving phase boundaries,
always yielding the conclusion that cpu time scales with arclength in the problem being
considered. We note that when interface convolutions become of order3∼1xmin, fine-grid
regions separated by less than3 will merge and the number of elements will stop growing
locally. This makes the simulation of fractal-like patterns feasible as the arclength of the
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interface is bounded from above byL B× L B. Finally, we note that adaptive gridding would
especially improve the cpu performance of problems similar to spinodal decomposition,
where the total interface decreases with time.

B. Induced Lattice Anisotropy

We tested the effective anisotropy of our dynamically adapting lattice in two independent
ways. The first follows the method outlined by Karma [30]. We fix the temperature far from
the interface to be constantT∞ everywhere, initially setting it to a critical value at which
the isotropic surface energy just balances the bulk free energy. For a specified background
temperature, the crystal will only grow if its radius is greater than a critical valueRo. The
radiusRo can be related to the background temperature through the total Gibbs free energy
of the system, given by

1G = −πr 2 L1T

TM
+ 2πrσ, (34)

whereL is the latent heat of fusion;1T = Tm−T∞, whereTm is the melting temperature and
T∞ is the temperature far away from the interface; andσ is the surface tension. Minimizing
1G with respect tor yields Ro as a function ofδT as

R∗ = do/1T, (35)

wheredo is the capillary length defined asdo= 2σTM/L.
One finds an equilibrium shape of the interface when the background temperature field

1T (written in terms ofU ) is adjusted dynamically so as to maintain the velocity of
the interface at zero as measured long thex-axis. Thus,1T is increased if the velocity
decreases and decreased if it grows. The effective anisotropy is inferred by fitting the
computed interface to an equation of the form

R(θ) = Ro(1+ εeff cosθ), (36)

whereR(θ) is the radial distance from the center of the crystal to its interface andθ the
polar angle. The effective anisotropyεeff represents the modification of the anisotropyε
due to the grid. Figure 6 illustrates a crystal grown to equilibrium using an input anisotropy
ε= 0.04. Using Eq. (36) we foundεeff= 0.041, within 5% ofε. Similar accuracy was found
for ε= 0.02, 0.03, and 0.05.

We also tested for grid anisotropy by rotating the grid by 45◦, which should represent the
lowest accuracy for square elements. We compared the tip speed of dendrites grown in this
direction to that of dendrites whose principal growth direction is along thex-axis. Figure 7
shows the tip velocity for the case of a dendrite grown at1= 0.55(ε= 0.05, D= 2, , β = 0,
dt= 0.016,1xmin= 0.4) compared with the same case when growth occurs along the
x-axis. The tip velocity approaches an asymptotic value within approximately 5% of the
tip velocity computed when the anisotropy is aligned with thex-direction.

C. Convergence and Grid Resolution

We tested the convergence of solutions as a function of the minimum grid spacing1xmin.
We used an undercooling of1= 0.55, with D= 2, dt= 0.016,1xmin= 0.4, and setλ to
simulateβ = 0. The parameterγ = 1.8, which assured that regions of rapid change ofφ
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FIG. 6. The equilibrium shape of the interface, for an input anisotropyε= 0.04. The measured effective
anisotropyε= 0.041.

andU were always encompassed in the regions of highest grid resolution. We examined
the tip speed of a dendrite for 0.3≤1xmin≤ 1.6, finding relatively good convergence of
the tip speed to theoretical prediction of microscopic solvability theory discussed above.
Figure 8 shows the asymptotic steady-state tip velocity for each case, superimposed on the
solid line, which is the result of solvability theory for1= 0.55. It is surprising that the so-
lution convergence is rather good even for1xmin= 1.6. We have found similar convergence
properties for the case of1= 0.25. Specifically, using1xmin= 0.4 and1xmin= 0.78 gives
essentially identical results.

FIG. 7. The time evolution of the tip velocity of a dendrite growing in the presence of surface tension
anisotropy for1= 0.55. Data are shown for the cases where the dendrite is moving in thex-direction with
two grid layering patterns, and along the 45◦ line. The horizontal solid line represents the analytic prediction of
microscopic solvability.
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FIG. 8. Asymptotic steady-state velocity as a function of minimum grid spacing1xmin, the for case1= 0.55,
D= 2, dt= 0.016.

The introduction ofγ in the error function9 gives us the freedom to tune the degree to
which the fine grid layering encompasses the thermal field as well as theφ field. Setting
γ = 0 leads to a uniform-like mesh at the highest level of refinementonly around the most
rapidly changing regions ofφ, while theU -field becomes encompassed in a rather disorderly
combination of quadrilateral and triangular elements. We found that this effect can increase
the tip-speed error by several percent, as well as increase fluctuations in tip speed. Increasing
γ produces a smooth layering of coarser uniform-like meshes ahead of theφ-field, corre-
sponding to region of large gradients inU . Figure 9 compares the mesh around the tip of a
dendrite grown at1= 0.65 forγ = 0 andγ = 4. The figure illustrates the gradual mesh lay-

FIG. 9. The finite element mesh around a dendrite branch growing at1= 0.65, showing the grid configuration
for (a)γ = 4 and (b)γ = 0. The grey-shaded lines represent isotherms ranging from−0.65≤U ≤ 0.02.
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FIG. 10. The tip velocity of a dendrite for1= 0.3. Data are shown for two grid-layering patterns. The
horizontal solid lines represent the analytic prediction of microscopic solvability.

ering encompassing the thermal field forγ = 4. In Figure 9,D= 1, dt= 0.016,1xmin= 0.4,
andλ is chosen to simulateβ = 0. Figure 7 also shows the tip speed for1= 0.55 for the
casesγ = 0 and 1.8, while Fig. 10 shows the tip velocity for a dendrite grown at1= 0.3
with γ = 0 and 20, respectively. In Fig. 10,D= 10,1xmin= 0.4, dt= 0.048, andβ = 0. In
this case the higher value forγ allows the tip velocity to approach within approximately 5%
of the solvability answer, as in Ref. [30]. Raisingγ further does not produce any significant
changes in tip speed.

The larger error for the1= 0.3 data (relative to the1= 0.55 case) is likely due to the
accuracy of the asymptotics we use in our simulations, which are strictly valid in the limit
of small interface Peclet number Pe, where

Pe= V̄(1, ε)
W

do
= V̄(1, ε)

a1a2
D = V̄(1, ε)

a1
λ, (37)

andV̄(1, ε) is the dimensionless tip velocity. At low undercooling we must use larger value
of D (or, equivalently,W/do) in order to decrease simulation times. We checked the effect
of increasing Pe by simulating dendrites at1= 0.3 with D= 20, maintainingβ = 0. We
found that the tip velocity remained within 12% of the solvability prediction. This effect of
a finite-Pe correction becomes even smaller for undercoolings1<0.3, assumingD≤ 20,
since dimensionless velocitȳV is adecreasingfunction of1. Using V̄ determined from
solvability theory to estimate the magnitude of Pe, we find that for1= 0.3(D= 5,W/do=
18), Pe= 0.012 while for the1= 0.1(D= 13,W/do= 23) computations presented in
Section V, Pe= 0.00011. Similarly, for the case1= 0.25(D= 13,W/do= 23), also pre-
sented in Section V, Pe= 0.0066.

V. DENDRITIC GROWTH USING ADAPTIVE GRIDDING

In this section we present results for two-dimensional solidification with and without
interface anisotropy. We illustrate the robustness of our algorithm and use it, in particular,
to investigate dendritic growth at low undercooling, presenting new results on dendrite
tip-speed selection.
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FIG. 11. The evolution of a crystal growing without interfacial anisotropy. Theφ= 0 contours are shown,
superimposed on the finite element grids. Time advances from left to right, top to bottom.

A. Dendritic Growth without Surface Tension Anisotropy

When the anisotropy parameterε in Eqs. (1) is set to zero, solidification proceeds without
the emergence of any preferred direction. In this case it is well known that a seed crystal
larger than a critical radius will eventually grow to become unstable to fluctuations and will
break into surface undulations via the Mullins–Sekerka instability [20]. Figure 11 shows a
series of time steps in the evolution of a solidifying disk grown atε= 0,1= 0.65, D= 4,
andλ set to generateβ = 0, makingdo= 0.1385. We use 11 levels of refinement and an
800× 800 system, making1xmin= 0.4. For coarser meshes the Mullins–Sekerka instability
sets in sooner due to grid noise. As1xmin is made smaller, grid noise becomes smaller, and
one must wait longer for the true “thermal noise” to set in and make the crystal interface
unstable. The dynamically evolving grids are also shown. This figure clearly demonstrates
how the grid creation scales with the arclength of the solidifying surface.

B. Dendritic Growth with Surface Tension Anisotropy

When surface tension anisotropy is present, a crystallizing disk forms dendritic branches
which travel along the symmetry axes of the anisotropy, driven by the anisotropy to a
steady-state tip velocity [6, 11–15]. As a verification of our algorithm we measured tip
velocities and shapes for dendrites grown at intermediate undercoolings. Figure 12 shows
the dimensionless tip velocity(V do/D) versus time for1= 0.45 and 0.65 andε= 0.05.
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FIG. 12. The time evolution of the dimensionless tip velocity for1= 0.45 and 0.65. The horizontal lines
represent solvability theory. The1= 0.65 case includes data for three system sizes. The data have been shifted
up by 0.025 for clarity.

In Fig. 12 the dimensionless diffusivitiesD= 3 and 1 and the dimensionless capillary
length aredo= 0.186 and 0.544, respectively. In both casesλ has been set to simulateβ = 0
kinetics at the interface, whileγ = 4 and 1.8, respectively. These values ofγ are chosen
so as to minimize grid-layering error. The solid horizontal lines represent the theoretical
values obtained from microscopic solvability theory. In all cases the converged velocities
are within a few percent of the theoretical prediction. The case of1= 0.65 includes data
for three systems sizes. These system-size effects are typical for intermediate1, showing
a relatively rapid leveling to an asymptotic speed to within a few percent of that predicted
by solvability theory. Figure 13 also shows a plot of the dendrite tip shapes produced by
our simulations, superimposed on the shapes predicted by solvability theory.

FIG. 13. The asymptotic dendrite tip shapes for1= 0.3, 0.45, and 0.55 (data points). The dashed lines are
the shapes predicted by solvability theory.
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FIG. 14. The time evolution of the tip velocity for undercooling1= 0.25 and 0.10.

C. Dendritic Growth at Low Undercooling

At lower undercooling we encounter significant finite-size effects which cause the tip ve-
locity to deviate from the solvability prediction. Figure 14 shows the evolution of the tip ve-
locity for1= 0.25 in two different system sizes. For a system of sizeLx = 6400× L y= 400,
the velocity goes to within a few percent of the solvability prediction. For a system size
6400× 3200 the tip velocity decays toward a value that exceeds the solvability prediction
by 8%. This effect is even larger at1= 0.1, also shown in Fig. 14, where the tip speed is
unconverged after a much larger simulation time. The lowest recorded velocity is still over
three times the steady-state velocity predicted by solvability theory.

To understand this finite-size dependence of tip velocity at low undercooling, we note
that at low1, the thermal fields of the two dendrite branches overlap, producing a thermal
envelope very different from that which emerges for the single, isolated dendrite branch
assumed in solvability theory. At large undercooling, each dendrite arm quickly outruns
the other’s thermal boundary layer, and solvability theory should apply, as is seen in Fig. 4
where1= 0.7. The conditions of solvability theory can be better approximated at lower
undercooling if simulations are performed in a domain which is small in one direction. For
the simulation performed with1= 0.25 in a small box (6400× 400), the branch in they-
direction is extinguished by its interaction with the wall and the velocity quickly approaches
the solvability prediction. However, when both branches are present, as in the simulation
with 1= 0.25 in the larger box (6400× 3200), their interaction leads to an increased tip
velocity because the dendrites are embedded in a circular rather than parabolic diffusion
field.

This is also clearly seen for a dendrite growing at1= 0.1 in Fig. 15, where the dendrite
shape and its associated field are shown for1= 0.1(D= 13, d0= 0.043, ε= 0.05,1x=
0.78, dt= 0.08). The dendrite arms never became free from each other in this simulation,
causing the observed deviation from solvability theory shown in Fig. 14. We note that
to avoid having the thermal field feel the effect of the sides of the box we perform our
simulations in computational domains for whichLx ∼ (5−10)D/Vn. To meet this criterion
the simulation for1= 0.1 was performed in a 10,2400× 51,200 domain, which is about
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FIG. 15. Dendrite mesh and isotherms for undercooling1T = 0.1 (a) The full domain with dimensions
102,400× 51,200. The growing dendrite is in the lower left corner. (b) A close-up displaying the dendrite tips,
approximately 1,300 units from the origin, while the temperature field spreads to about 5,000 units.

10D/Vn. We note that the ratio of the largest to smallest element size in this simulation
is 217. A fixed mesh having the same resolution everywhere would contain 9× 109 grid
points.

We can estimate the timet? when the growth of the dendrite tip crosses over from the
transient regime where the branches interact to that where they become independent by
equating the length of the full diffusion field, 3(Dt?)1/2, to the length of a dendrite arm,
Vnt?. This gives the crossover time as

t? = 9D
/

V2
n . (38)

The values fort? corresponding to the cases1= 0.45, 0.55, 0.65, and1= 0.25 and 0.10
in Figs. 7, 12, and 14 confirm this scaling.

These results at low undercooling have important implications when comparing theory to
experimental observations. In particular, sinceVn∼14 as1→ 0 [45], making the transient
time t?∼1−8, it does not appear likely that independent predictions for tip speed and
radius, as given by solvability, are likely to be observed experimentally. In this regime,
the appropriate theory to use to obtain predictions of the tip speed and velocity is one
which explicitly takes into account the long range effects of interacting thermal fields of
other branches. Almgrenet al.present one such approach [46]. In particular, study of real
dendrites with sidebranches, growing at low undercooling, will require such treatment. In
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closing, we note that while the independent predictions of tip speed and radius deviate
from that of solvability theory at low undercoolings, the dimensionlessstability parameter
σ ∗ = 2doD/Vn R2 doesagree well with solvability theory.

Further investigation of the tip speeds at low undercooling, comparison with experiments,
and new results for two-sided directional solidification will be reported in forthcoming
publications.

VI. CONCLUSION

In this paper we present an efficient algorithm used to study solidification microstructures
by adaptive refinement on a finite element mesh and to solve the phase-field model given by
Eqs. (1). Our algorithm was made particularly robust by using dynamic data structures and
pointer variables to represent our evolving grid. As well, the modular nature of our code
offers an efficient method of expanding the code to different situations.

We found that our solution time scales with the arclength of the interface being simulated,
allowing simulation of much larger systems and at very low undercoolings. In particular,
simulations for undercoolings as low as1= 0.1 are quite straightforward in systems larger
than 10D/Vn. This undercooling represents the upper limit of dendrite growth in experi-
ments [2].

Dendrite tip velocities at intermediate to high undercoolings were found to agree with
solvability theory to within a few percent. At low1, we found that the transient interaction
of thermal fields from perpendicular dendrite branches modifies the tip velocity from that
given by solvability theory at times shorter than an estimated crossover time. Since this
crossover time itself becomes larger as1 decreases, it is likely that transient effects will
play a leading role in determining the tip velocity at low undercooling. Furthermore, this
suggests that at low1 the tip velocity in the presence of sidebranching will be different
from that predicted by solvability theory.

Our algorithm is currently being used to examine directional solidification in models
with unequal diffusivities in the solid and liquid phases. These results will be presented in
upcoming publications.
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