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We study the evolution of solidification microstructures using a phase-field model
computed on an adaptive, finite element grid. We discuss the details of our algorithm
and show that it greatly reduces the computational cost of solving the phase-field
model at low undercooling. In particular, we show that the computational complexity
of solving any phase-boundary problem scales with the interface arclength when us-
ing an adapting mesh. Moreover, the use of dynamic data structures allows us to sim-
ulate system sizes corresponding to experimental conditions, which would otherwise
require lattices greater thah’2< 217 elements. We examine the convergence proper-
ties of our algorithm. We also present two-dimensional, time-dependent calculations
of dendritic evolution, with and without surface tension anisotropy. We benchmark
our results for dendritic growth with microscopic solvability theory, finding them
to be in good agreement with theory for high undercoolings. At low undercooling,
however, we obtain higher values of velocity than solvability theory at low under-
cooling, where transients dominate, in accord with a heuristic criterion which we
derive. © 1999 Academic Press

I. INTRODUCTION

Modeling solidification microstructures has become an area of intense study in rec
years. The properties of large-scale cast products, ranging from automobile engine bloc
aircraft components and other industrial applications, are strongly dependent on the phy
that occur at the mesoscopic and microscopic length scales during solidification. The n
ingredient of the solidification microstructure is the dendrite, a snowflake-like pattern
solid around which solidification proceeds. The microscopic properties of such cast prod
are determined by the length scales of these dendrites, and for this reason understandi
mechanisms for pattern selection in dendritic growth has attracted a great deal of inte
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from the experimental and the theoretical communities. In particular, a great deal of rese:
has been undertaken to understand such issues as dendrite morphology, shape, and
Experiments on dendrite evolution by Glicksman and co-workers on succinonitrile (SC
[1, 2], and more recently pivalic acid (PVM) [3], as well as other transparent analogues
metals, have provided tests of theories of dendritic growth and have stimulated consider
theoretical progress [4-6]. These experiments have clearly demonstrated that in ce
parameter ranges the physics of the dendrite tip can be characterized by a steady
for the dendrite tip velocity, radius of curvature, and shape. Away from the tip the tim
dependent dendrite exhibits the characteristic sidebranching as it propagates.

The earliest theories of dendritic growth solved for the diffusion field around a self-simil
body of revolution propagating at constant speed [7, 8]. In these studies the diffusion fiel
found to determine the product of the dendrite velocity and tip radius, but neither quantity
itself. Adding capillarity effects to the theory predicts a unique maximum growth speed [
Experiments, however, have shown that these theories do not represent the correct opel
state for real dendrites.

The introduction of local models of solidification brought further insight to the steac
state dendrite problem [10-13]. These models describe the evolution of the interface
corporating the physics of the bulk phases into the governing equation of motion of
interface. A remarkable breakthrough of these models was to show that a steady-state
drite velocity is obtainednly if a source of anisotropy (e.g., in the interfacial energy)
is present during dendritic evolution. The dendrite steady-state tip velocities appear |
discrete rather than continuous spectrum of values, making the role of anisotropy of g
importance in the description of the dendrite problem, in both the local models and
full moving boundary problem [6, 14, 15]. It was further shown that only the fastest of
spectrum of steady-state velocities is stable, thus forming the operating state of the denc
This body of theoretical work is generally knownragroscopic solvability theory.

The formation of sidebranches is another important aspect of dendritic growth that
received considerable attention. The formation of sidebranches is widely believed tc
caused by thermal fluctuations, which enters solidification models in the form of rand
noise possessing specific features [16—18]. The manner in which thermal noise is ampl
may depend on the overall dendrite morphology. It was shown that noisy fluctuatic
traveling down a paraboloid of revolution do not produce sidebranch amplitudes consis
with experiments [16], while fluctuations traveling down an initially missile-shaped dendri
amplify into sidebranches comparable to some experiments [18]. Karma also investig:
the addition of interface fluctuations [17]. However, this source of noise only becon
relevant at high velocities.

The foundation around which most theories of solidification are based is the tin
dependent Stefan problem. This theory describes the evolution of the thermal or sol
diffusion field around the solidification front, along with two accompanying boundary co
ditions. The first boundary condition relates the velocity of the moving front to the differen
in thermal fluxes across the solid—liquid interface. The second, called the Gibbs—Thom
condition, relates the interfacial temperature to the the thermodynamic equilibrium temy
ature, the local interfacial curvature, and interface kinetics. The interface kinetics term a
a nonequilibrium correction to the interface temperature, usually assumed to be in Ic
equilibrium for a given curvature. Solving the Stefan problem numerically has traditiona
involved front tracking and lattice deformation to contain the interface at predefined lo
tions on the grid [19, 20]. This method is generally complicated to implement accurat
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and requires much effort. Moreover, it can be inefficient in handling coalescence of twc
more interfaces.

The solution of the Stefan problem has been made more tractable with the introduc
of the phase-fieldnodel. The phase-field model avoids this problem of front tracking b
introducing an auxiliary continuous order parame#ér) that couples to the evolution of
the thermal or solutal field. The phase field interpolates between the solid and liquid pha
attaining two different constant values in either phase (e:@), with a rapid transition
region in the vicinity of the solidification front. The level set@(fr) =0 is identified with
the solidification front, and the subsequent dynamigsarte designed to follow the evolving
solidification front in a manner that reproduces the Stefan problem [21-25, 30, 26—-29]

The price to be paid for the convenience of the order parameter is the introductior
a new length scal&/ which represents a boundary layer over which the order parame
changes sign. This distance is referred to as the interface width and does not appe
the Stefan problem. As such, one requirement of the phase-field model is to recovelr
Stefan limit in a manner that is independent of the interface widWagpproaches some
appropriate limit. Considerable work has been done to rélate various parameters of
the phase-field model in order to establish a mapping between the phase-field model
the Stefan problem [22, 30, 31]. While the formal nature of these mappings does not s
to be very sensitive to the precise form of the phase-field model [31], different asymptc
limits of the phase-field parameters can lead to widely varying complexity in the numeri
implementation.

The introduction of the interface widtW makes the phase-field model prohibitively
expensive to simulate numerically for large systems, since the grid spacing must be s
enough everywhere that the phase-field model converges to the the sharp interface
[22, 30]. Caginalp and Chen [32] showed rigorously that the phase-field model conver
to the sharp interface limit when the interface width (and hence the grid spacing) is m
smaller than the capillary length. While this result is necessary to establish that the ph
field model does map onto the Stefan problem, the parameter values required to realiz
asymptotic limit can be computationally intractable. Experimentally, the physical sizes
quired to contain realistic microstructures can be many times the size of the thermal diffus
length, which in turn can be orders of magnitude greater Waihus, sinceA Xmin < W,
computing in the limit of &V — 0 does not allow one to simulate experimental systems.

Recently Karma and Rappel [30] presented a different asymptotic analysis performe
powers of the ratio of the interface width to the diffusion lengitV/,, taken to be equal
in both phases. Their procedure offers two computational advantages. The first is th
allows one to simulate the phase-field model with zero interface kinatitgutthe need to
makeW — 0. Specifically, this limit, as well as a nonzero kinetics limit, can be simulate
with an interface widthwW (and hence the grid spacing) of order the capillary length,
much more tractable regime. Simulating solidification microstructures in the limit of ze
interface kinetics is important because most experiments performed at low undercoo
in materials such as succinonitrile are in this limit [2]. Karma and Rappel tested th
asymptotics by comparing their simulations to the results of microscopic solvability thec
finding excellent agreement down to dimensionless undercoolings as low as 0.25.

A recent extension of Karma and Rappel’s analysis by Almgren [33] also promises
allow similar asymptotics to be performed on a two-sided model of solidification [33
i.e., when the diffusivities in the solid and liquid differ, relevant in the study of direction:
solidification of binary mixtures.
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The theory of level sets [34, 35] has also recently reemerged as another effective
that shows great potential in modeling dendritic growth. While related to the phase-fi
model, level-set theory does not require the presence of a thin interfaciaMithus
greatly reducing the stringent grid requirements posed by conventional phase-field moc
To date, however, level-set methods have not been benchmarked with solvability theor
other theoretical prediction for Stefan problems.

While expanding the horizon of solidification modeling, phase-field modeling has st
been limited to small systems sizes, even when solved by adaptive algorithms [36].
main problem is the presence of an interface region with a minimal length scale that mus
resolved. For typical microstructures grown at dimensionless undercooling of 0.1 or le
the ratio of the system size to this minimal grid spacing can be greater thawigh this
restriction most numerical methods will naturally fail. What is needed to go beyond tt
limitation is an effective adaptive technique [36—39] which dynamically coarsens the g
spacing away from the front.

In this paper we present a new, computationally efficient adaptive-grid algorithm 1
solving a class of phase-field models suitable for the study of phase-boundary evolut
We study two-dimensional dendritic solidification modeled using two coupled fields, one
the order parameter and the other for the thermal field. Our algorithm effectively combir
and implements ideas of adaptive-mesh refinement with ideas of dynamic data structt
allowing us to enlarge the window of large-scale solidification modeling.

The outline of this paper is as follows: In Section Il we introduce the physical model
be examined, summarizing its properties and its various limits. In Section Il we preser
detailed description of our algorithm. In Section IV we present results on CPU scalability
our algorithm and examine issues of grid convergence and grid anisotropy on our soluti
In Section V we present results of dendritic growth with and without the presence
anisotropy in the surface energy. We show that for high undercooling, dendrites grown v
our method converge to tip speeds in agreement with microscopic solvability theory.
low undercooling, however, we do not find agreement with steady state solvability thec
owing to long-lived transients in the thermal field evolution. In Section VI we conclude at
discuss our results.

II. THE PHASE-FIELD MODEL

We model solidification in two dimensions using a standard form of phase-field eqt
tions which couple a thermal field to an order parameter felth a double-well potential
[22, 30]. We begin by rescaling the temperature fieloy U = cp (T — Tyw)/L, wherecp is
the specific heat at constant pressuris,the latent heat of fusion, affg, is the melting tem-
perature. The order parameter is definedbwhere we defing = 1 in the solid phase and
¢ = —1intheliquid phase. The interface is definedy 0. We rescale time throughout by
70, atime characterizing atomic movementinthe interface. Length is rescalég byength
characterizing the liquid—solid interface. With these definitions, the model is written as

ou _ 2 }8_4:
at ~ PV U oG
- 3 - / !
A2<n>d_‘f = V- (A[)Ve) + g'(¢) — AUP'(¢) 1)

IA(R)
9

9 2 n
+ Ix <|V¢| A(n)

d 5~ - DA
> + @(Iwbl A(n) )

09y



SOLIDIFICATION MICROSTRUCTURES 269

whereD = a1o/W?2 ande is the thermal diffusivity. The functiorf (¢, U; 1) =g'(¢) —

AU P’ (¢) is the derivative of the double-well potential with respecttand couples the
U and¢ fields via the constant. The primes on the functiong(¢) and P(¢) denote
derivatives with respect 9. We useg' (¢) = ¢ (1 — ¢?) andP’(¢) = (1 — ¢?)?, which are
the same functional forms used in Ref. [30]. Following Karma and Rappel [30], anisotrc
has been introduced in Egs. (1) by defining the width of the interface W (@¢ = W, A(ii)
and the characteristic time i) = 7o A%(fi), with A(R) € [0, 1] given by

4e (o) + (9"
1-—3e |Vo|t

A[MR) = (1—3¢) |1+ (2

The vector

SoX+ by
2
(¢2 +¢3)"

defines the normal to the contours of théeld, wherep x andg y are defined as the partial
derivatives ofp with respect toc andy. The variables parameterizes the deviation\f(i)
from W, and represents the anisotropy in the interface energy of the system. We note
this definition of anisotropy is not unique [31], but we expect results to be similar for oth
definitions of anisotropy.

In simulating the phase-field model we adopt the point of view that the order parame
field ¢ is a computational tool whose main purpose is to eliminate front tracking. As su
we would like to simulate the model given by Eqgs. (1) with the r&¥g/d, (1/d, in length
units defined above) to be as large as possible. At the same time we would like the behz
of the model outside the boundary layer definedgbto describe the Stefan problem as
closely as possible. To this end, we relate the parameters of the phase-field model acco
to Ref. [30], valid in the asymptotic limiV, < «/ V., wherea/V; is the diffusion length
andV, is a characteristic velocity of the front defined py

The specific asymptotic limit we model is one where thdield satisfies

ﬁ:
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everywhere away from the interface, while at the interface, the gradidntsatisfies

U U
Vo=D|—=| —-=| |. (5)
MNly,  anly,

whereV is the velocity normal to the interface, denoted¥yy. The notation+ and —
denotes the solid and liquid side of the interface, respectively. The description of the Ste
problem is completed by the Gibbs—Thomson condition and the interface kinetics condi

U Xin) = —d(f)x — B(M)Vn, (6)

whered (i) is the capillary lengthk is the local curvature, angi(i) is the interface attach-
ment kinetic coefficient, all assumed to be in dimensionless form according to the ab
definitions. The capillary length is related to the parameters of Eqgs. (1) by
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wherea; = 0.8839 for the particular form of the free energy defined in Egs. (1) [30and
is the angle betweemand thex-axis. The kinetic coefficient is given by

B

Al @

AW, D

wherea, = 0.6267 for our choice of the free energy functional [30]. One remarkable featu
of Egs. (7) and (8) is thal,, 79, andA can be chosen to simulate arbitrary valueg ofor

W, of orderd,. In particular, setting. = D /a, allows us to compute the phase-field model
in the limit of the Stefan problem [30], whege=0. This is also an appropriate value for
SCN, especially at low undercooling.

Equations (7) and (8) fg8 andd, can be related to a wide class of free energies via th
parametersy; anda, [30], which are related to integrals that dependyd#,), P(¢o), and
dgo/dX, whereg, is the lowest order description of the order parameter fielthd is a
solution of the equation

g dg(eo) _

ax2 depo

0. )

We also note that these asymptotics are related to a more general asymptotic ana
performed by Almgren [33], which relates the parameters of the phase-field model to th
of the Stefan problem in the case of unequal diffusivities in the solid and the liquid phas
In this case, the asymptotics provides an additional set of constraints on the admiss
functionsP’(¢), g'(¢), and hencey anda,.

Ill. THE ADAPTIVE-GRID ALGORITHM

The main computational challenge of simulating Egs. (1) involves resolving two col
peting length scales: the lattice spacihgon which the simulation is performed and the
physical size of the systemng. Even with improved asymptoticelx must remain rela-
tively small, whileL g must be extremely large in order to make possible computations
extended solidification microstructures. Moreover, the main physics of solidification (a
the evolution of most phase-boundary problems) occurs around an interface whose ar
much smaller than the full computational domain. Near this interface the order param
varies significantly, while away from the interface variationgpiare small. Meanwhile,
the thermal fieldJ extends well beyond the interface and has much more gradual variati
in its gradients, permitting a much coarser grid to be used to regblMéhe most obvious
manner by which to overcome this problem is to use a method that places a high densi
grid points where the interface ¢for U varies most rapidly and a much lower grid density
in other regions. Furthermore, the method must dynamically adapt the grid to follow 1
evolving interface [36—39], while at the same time maintaining a certain level of soluti
quality.

We solve Egs. (1) using the Galerkin finite element method on dynamically adapti
grids of linear, isoparametric quadrilateral and triangular elements. The grid is adaf
dynamically based on an error estimator that utilizes information from botb tred U
fields. We wrote our code in FORTRAN 90 (F90), taking advantage of the efficiency
FORTRAN 77 while using advanced C-like features, such as data structures, derived |
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types, pointers, dynamic memory allocation, and modular design, to conveniently adap
grid and the solution fields.

In the broadest sense, our algorithm performs functions that can be divided into f
classes. The first deals with the establishment, maintenance, and updating of the f
element grids, and the second with evolvimgndU on these grids, according to Egs. (1).
We presently describe these classes, the adaptive grids, the finite element procedure
the interconnections of these processes.

A. The Finite Element Grids

The first class of functions in our algorithm centers around maintaining a grid of fini
elements on a data structure known aguadtree[40—42], which replaces the standard
concept of a uniform grid as a way of representing the simulational grid. The quadtree
tree-like data structure with branches up to a prespecified level. Branches of the quadtre
themselves data structures that contain information analogous to their parent, from wl
they branched, but one level down. Figure 1 illustrates the structure of a quadtree as we
the relation between elements at different levels of refinement. Every entry on the quac
contains information pertaining to a four-noded isoparametric quadrilateral finite elem
[43]. This information includes the following:

o values ofp andU at the four nodes;

o the nodal coordinates of the element;

o the level of refinement of the element on the quadtree;

o the value of the current error estimate;

o the elementnumber, which contains information aboutthe coordinates ofthe elen
and its level of refinement;

e anarray mapping the element’s four nodes onto the entries of a global solution ari

e pointers to the element’s nearest neighbors sharing a common edge and at the
level of grid refinement;

e a variable that determines whether or not an element contains further subelem
which we termchild elements;

A D
P ~—
B C
A B C D A B C D A B C D
bos bonoomp b g
A B C D DID2D3D4 A1 A2\ A4 C2C3 C4 D4

D21 D22 D23 D24

FIG. 1. An illustration of the quadtree element data structure. The first frame shows an element and f
child elements. Splitting of one of the children and one its children is shown, along with the branch evolutior
the quadtree. Branches with triangles indicate square elements which are bridged with triangular or rectan
elements.
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e pointers to an element’s child elements;
e a pointer to thgarentelement from which an element originates.

The elements of the quadtree can be refined by splitting into four child elements, e
sharing the same parent element one level down on the quadtree and each with its
set of information, as outlined above. A parent element and it's four child elements
referred to as damily. Refinement produces a finer mesh within the confines of the origin
parent grid by bisecting each side, as shown in Fig. 1. Unrefinement, which consist:
fusing the four child elements back into the parent, has the opposite effect, locally crea
a coarser mesh. Both refinement and unrefinement proceed via dynamic memory alloca
making our code scalable. We note that unrefinement can occur only if the child eleme
do not possess further children of their own. Also, in order to avoid having regions of ve
differentrefinement bordering each other, we impose the restriction that any two neighbo
guadrilateral elements may be separated by no more than one level of refinement (see Fi
We define the level of refinement of an elementdsuch that a uniform grid at a refinement
levelle would contain 2 x 2' grid points in a physical domaibg x Lg.

Cases where an element has no children, a missing neighbor, or no parent are handls
null pointers. The latter case occurs only for the root of the quadtree.

All elements at a given level of refinement on the quadtree are “strung” together b
linked-list of pointers, referred to &3-lists. There are as man@-lists as there are levels
of refinement in the quadtree. Each pointer in@st points to (accesses) the location in
memory assigned to one element of the quadtree. The purpose@isids to allow traver-
sal of the quadrilateral elements sequentially by level, rather than by recursively traver:
guadtree from the root down, a procedure which is memory intensive and relatively slo

Alongside the main grid of quadtree elements, the code maintains two independent ¢
representing special linear isoparametric triangular and rectangular elements. Thes
ements are used to connect the extra nodes that arise when two or more quadrila
elements of differing refinement levels border each other. These element types are refe
to asbridging elementsThey are maintained as two linked lists of derived data types, or
containing information about triangular elements and the other rectangular. Element
both these grids include the following information:

e the values ofp andT at the three nodes (four for rectangles) of the element;
e the nodal coordinates;
e node numbers that map the element’s nodes onto the global solution array.

The types of bridging triangles and rectangles that can occur are enumerable and are s
in Fig. 2.

The main set of operations performed on the grids described above concern refiner
of the finite element mesh as a whole. The refinement process is performed only on
quadrilateral mesh. The triangular and rectangular grids are established after this pro
is completed (see Fig. 1). To refine the grid the code traverses the elements of the quac
refining (unrefining) any element whose error function, discussed below, is above (belo
critical valueoy (07). We also note that fusion of four quadrilateral elements can occur on
if all four of its children’s error functions are below the critical valse whereo, < oy,.
We found that ifo; = o, the grid sets into oscillations, where large numbers of elemen
become alternatively refined at one time step, then unrefined at the next.

The processes described thus far are grouped into modules that encapsulate various r
tasks, and can cross-reference each other’s data and instructions. The module highe
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FIG. 2. lllustration of all possible configurations requiring completion with triangular and/or rectangul
elements.

in the hierarchy contains the definition of the quadtree data structure and routines
construct the initial uniform grid, refine and unrefine individual quadrilateral elements, a
set the initial conditions. Another module constructs @uists. It contains routines that
construct the initialG-list from initial uniform quadtree data structure, as well as add ©
delete element pointers from telist as elements are created or deleted from the quadtre
Another module accessing both the previous ones’ data structures has the role of creatir
triangular and rectangular element grids. It contains definitions for creating triangular ¢
rectangular element data structures and routines that search the quadtree, building the |
lists of triangles and rectangles that make up these grids. The main program is containe
its own module and contains the driver program that creates the initial @itlss, and
triangular and rectangular element types. The driver program also sets into motion the -
link in the simulation, which evolveg andU and periodically adapts the dynamic grid by
calling procedures described above. A flowchart of these processes is shown in Fig. 3.

B. The Finite Element Formulation

The integration of Egs. (1) is done by the final module in the code. This module perfor
four main processes:

1. Itmaps the internal element node numbers to the indices of a global solution vec
The ¢-field is mapped onto the odd numbers, (1, 3,.5), while U is stored on the even
numbers of the global solution vector (2, 4, 6,).

2. It advances th&J and¢-field vectors byN, time steps on the finite element grids
defined above.

3. It calculates an error function for each element of the quadtree, based on e
estimate of the quadrilateral elements.

4. It invokes routines in the modules described above to refine the grid according
this error estimator.
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INITIALIZATION

Define intial mesh: nodes and elements
Construct intial quadtree data structure
Construct G-lists for initial mesh

4)[ TIME SEQUENCE ON FIXED MESH N J

ASSIGN
Global node numbers
Map solution data onto work vectors

{
—{ SINGLE TIME STEP M )

ASSEMBLY AND SOLUTION

Assemble finite element equations
Solve explicitly for phase-field
Solve implicitly for temperature
Update solution vectors

v
L (INCREMENT TIME,M=M+1)

ERROR ESTIMATION

Traverse quadtree and compute flux variation
Compute error estimate on each element

!

REGRIDDING

Add/remove quadrilateral elements
Update G-lists
Generate new triangular and rectagular elements

!
4(NEXT TIME SEQUENCE, N=N + IJ

FIG. 3. Aflowchart illustrating the algorithm program modules.

Steps 1-4 are repeated until a sufficient time evolution of the microstructure is establis|
The variable\ is set such that the interface remains within the regions of fine mesh betwe
regriddings, which we typically choose to be 100 time steps. Step 1 involves searching
elements, and their neighbors, and assigning each node a unique number that will he
counterpart on a global solution vector.

The finite element discretization of Egs. (1) is done using Galerkin's weighted residi
method [43]. The method begins by assuming thandU are interpolated within an
element as

N N
¢°=> ¢FNi(x,y)  U®=) USNi(x, ), (10)
i=1

i=1

where¢® andUF are the field values at th nodes of the elemerg Our mesh uses
quadrilateral and triangular elements. For quadrilateral elemints4 and the nodes are
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the four corner points of the element. For triangular eleméhts,3 and the nodes are onthe
vertices of the triangle. The functiom (x, y) are standard linear interpolation functions
appropriate to the element being used [44] and satisfy

Ni (X}, Yj) = 6ij, (12)

whered; j is the Kroneker delta. We employ the isoparametric formulation, which implie
that the coordinates within an element are interpolated using the same shape functions
in Eq. (10) to interpolate the- andU -fields. Rewriting the differential equations fer

in Egs. (1) ad 4¢ =0, and of theJ -equation ad.yU =0, the Galerkin method requires
that

/ Ni (X, ) Ly¢%(x, ) dx dy = 0
Qe

(12)
/ N (x, )Ly US(x, y) dx dy= 0,
Qe
fori=1,23,..., N, whereQ, represents the area of an elemerubstituting Egs. (10)
into Egs. (12), we obtain two linear algebraic equationgffandU;,i =1,2,3,..., Nin

the elemene.

We next defind®}® = (¢1, ¢, ¢3, ..., dn)" and{U}e= (Uy, Uy, Us, ..., Un)T, where
the superscripf denotes transpose, makifig}® and {U}¢ column vectors. The linear
algebraic statement of the finite element form of Eqgs. (1) then becomes

€119 L = (M1 +1ED 91 + (7o e
d{U}e d{¢}e (13)
1% = prajuye + 5ol Mk,
where the matriceJ], [€]. [A], [M], and [E] and the vectof F; A}© are given by
[l = [ [N]"[N]dxdy, (14)
Qe
(€] = / [N]T[N]A%©9(¢9)) dx dy, (15)
Qe
[A]=—/Q (INITIN] + [NIT[N,]) dx dy (16)
[M]=—/Q (INTTING] + [NTIN]) AZ(6(6%) dx diy (17)

[E] = - / (INITING = INTTIN,]) AG @90 (B(¢*) dxdy.  (18)

{F;2)® = [ [N]Tf(¢% U® ) dxdy, (19)

Qe

where [Ny], [Ny] denote the partial derivatives of the vector of shape functions with respe
to x andy, respectively. The functioA is just Eq. (2) rewritten in terms of the angl¢hat
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the normal to the interface makes with th@xis. Specifically, defining

oy _ 095
tand (¢°) = 8¢?X, (20)
then
o 4e (14 tarfo)
AG@ = =391+ T3 T ke @D
while w () is proportional to the derivative dk(9) and is given by
06(0%) — 166 tané (1 — tar? 9) (22)

(1+targ)2

We use a lumped formulation for the matric&j pnd [C] [43]. In this procedure, the
row vector of shape functionsN[ in Eq. (14), is replaced by the identity row vector
[1T=][1,1,1,...]. The resulting matrix €] then consists of identical columns, each of
which contains the elemei; (x, y) in the position of theth row. A lumped term is then
defined as a diagonal matrix whose entries take on the value

nodes

1
Le= - N; (x, y)dx dy. 23
4§Lemwxy (23)

The use of a lumped matrix foC]] allows us to assemble a diagonal matrix for the left-
hand side of Egs. (13), stored as a one-dimensional vector rather than the two-dimens
matrices that would be required if we used the consistent formulation for the assembl
the [C] matrices. The use of diagonalization is necessary since microstructures evolvin
low undercooling can produce interfaces with well ovet é@ments. Storage of:2 10'°
matrices, needed if using a consistent formulation, would be impossible. We note that u
diagonalization to discretize our equations on a uniform finite element mesh recovers
usual finite element discretization.

The global{¢} (obtained after assembly of the element equations in field in Egs. (1-
is time stepped using a forward difference (explicit) time scheme. For each time stey
the ¢-field, the globalU -field is then solved iteratively using a Crank—Nicolson scheme
Convergence ofU },.1 is obtained in a few iterations.

C. The Error Estimator

Regridding is based on an error estimator function, which is obtained followir
Zienkiewicz and Zhu [44], based on the differences between calculated and smoof
gradients of the andU fields. Specifically, we define treomposite field

¥ =¢+yU, (24)

wherey is a constant. This is the simplest definition that allowsdhield to contribute to

the mesh refinement, along with thefield. The weighty is chosen to amplify variations of
theU -field comparable to the¢-field. The selection of is discussed in more detail below,
where we show that using only gradients of ¢iéield in establishing the grid [36] can lead
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to large errors in calculations of tip velocity. Since itissndU that are being calculated,
and not their gradients, we do not expect the gradiesdt td be continuous across element
boundaries, due to the order of the interpolation used. Thus we expect the difference bety
the calculated and smoothed (continuous across element boundaries) gradients to pr
a reasonable estimate of error. This method appropriately meshes regions of both s
gradients and regions where theandU -fields change rapidly.

We define the error estimator functiéras

€= (js - qc’ (25)

whereq; andd are the calculated and smoothed gradients akspectively. The smoothed
gradients are calculated to be continuous across element boundaries. To defgrwine
assume it to be interpolated in the same way agthendU -fields, namely

ds = [N]{Q°}, (26)

where N] is the row vector of element shape functions, 4Qd} is a 4x 2 matrix whose
columns represent the nodal values of fluxe®dh the x- andy-directions, respectively.
To find { Q%} we use Galerkin's method, minimizing the weighted residual

[N]Tédsze=/g[N]T([N]{QS}—aC)dsz=o. 27)

Qe

The calculation is simplified by lumping the left-hand side of Eq. (27), leading to

(/ [N]T[11d9>{QS}=/ [N]"d. de2, (28)
Qe Qe

where fl] =[1, 1,1, ..., N]. Assembling Eq. (28) for all quadrilateral elements yields ar
equation for the smoothed gradiefi€3}® of the global field¥, at all element nodes, of the
form

[DI{Q}° =D, (29)

where [D] is a diagonal matrix, due to “mass” lumping, af@d}® is aN x 2 matrix for the
global, smoothed flux. Diagonalization is employed to reduce computational cost [44]."
have confirmed that our calculations are insensitive to the forr@pbj testing to ensure
grid convergence.

For the actual error updating on the elements of the quadtree we used the normal
error defined by

E2 _ er |(qs - qc)|2
¢ > e Jo 108l

The domain of integratiof in the denominator denotes the entire domain of the probler
ThusEZ gives the contribution of the local element error relative to the total error calculat
over the entire grid.

Figure 4 shows a snapshot at°line steps into the simulation of a thermal dendrite
computed with our algorithm. The figure showsand U as well as the current grid.
The dendrite is fourfold symmetric, grown in a quarter-infinite space, initiated by a sm

(30)
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FIG. 4. A dendrite grown using the adaptive-grid methodfoe 0.7, D = 2, ¢ = 0.05. Clockwise, beginning
at the upper right, the figures show contours of théield, the contour =0, contours of thep-field, and the
current mesh.

quarter disk of radiudR, centered at the origin. The order parameter is defined on «
initially uniform grid to be its equilibrium valug(X) = —tanh((|X| — Ry)/+/2) along the
interface. The initial temperature decays exponentially ftbes O at the interface te-A
asX — oo. The parameters set for this simulation are-0.70, D =2, dt =0.016, and
chosen to simulatg = 0. The system size is 800800, withAxmin = 0.4, and about half of
the computational domain in each direction is shown. Sidebranching is evident and ar
due to numerical noise. This simulation was completed in approximately 15 cpu-hon a
UltraSPARC 2200 workstation.

IV. SCALABILITY AND CONVERGENCE PROPERTIES
OF THE ADAPTIVE-GRID ALGORITHM

In this section we present results that illustrate the convergence properties of solutior
Egs. (1) computed with our algorithm, the effect of grid-induced anisotropy of the adapti
mesh, and the speed increase obtained by using an adapting grid.

A. cpu Performance

We examined the cpu scalability of our algorithm as a function of system size by growi
dendrites in systems of various linear dimendigrnand measuring the cpu tini® required
for the dendrite branches to traverse the entire system. Figure 5 shows a plot of these
for a dendrite grown at undercooling= 0.55 using the same parameters as in Fig. 4. Thi
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A=0.55, e=0.05

Ln(CPU time)

CPU time ~ L,

-1
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FIG.5. cputime vs the system size, illustrating the computing time for a dendrite to move through the sys
of linear dimensiorl g using our adaptive mesh method.

minimum grid spacing has been setAa,j, = 0.4 in this data. Figure 5 clearly shows that
R& ~ LZ. This relationship can be obtained analytically as follows.

The number of calculations performed, per simulation time step, is proportional to 1
number of elements in the grid. This relationship is set in turn by the arclength of t
interface being simulated multiplied by the diffusion lend@#V,. This product defines
the arclength over which the highest level of refinement occurs. For a needle-like dend
the arclength is approximatelyg. Moreover, since the dendrite tip moves at a constar

velocity V;,
a
- R&D 2
R2 = L 31
[anAxr%} > oy

whereR is a constant that depends on the details of the implementation of the algorit
used to evolve Egs. (1). The cpu time needed to compute the traversal time on a unif
grid, RY', is found, by the same analysis, to be

R = [ i }L%, (32)

Vh AXZ,

where Ry also depends on the implementation but is likely to be smaller RjarThus,
comparing our method with simulation on a uniform grid we obtain

: a u 1
LLILnoo RY/R' = Lo (33)
For larger systems, the adaptive scheme should always provide faster CPU perform
regardless of implementation. Indeed, any method that uses a uniform grid of any
will eventually be limited by memory requirements lag becomes large. The arguments
leading to Eq. (31) can also be generalized to any problem of evolving phase bounda
always yielding the conclusion that cpu time scales with arclength in the problem be
considered. We note that when interface convolutions become of rdek Xmin, fine-grid

regions separated by less tharwill merge and the number of elements will stop growing
locally. This makes the simulation of fractal-like patterns feasible as the arclength of
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interface is bounded from above hy x L 5. Finally, we note that adaptive gridding would
especially improve the cpu performance of problems similar to spinodal decompositi
where the total interface decreases with time.

B. Induced Lattice Anisotropy

We tested the effective anisotropy of our dynamically adapting lattice in two independ
ways. The first follows the method outlined by Karma [30]. We fix the temperature far fro
the interface to be constami, everywhere, initially setting it to a critical value at which
the isotropic surface energy just balances the bulk free energy. For a specified backgr«
temperature, the crystal will only grow if its radius is greater than a critical vVRjudhe
radiusR, can be related to the background temperature through the total Gibbs free ene
of the system, given by

AG = —xr? LAT
T

+ 2nro, (34)

M

wherelL isthe latent heat of fusiol§ T = Tr,— T, WhereTy, is the melting temperature and
T is the temperature far away from the interface; ansd the surface tension. Minimizing
AG with respect ta yields R, as a function of T as

R* = do/AT, (35)

whered, is the capillary length defined as =20 Ty /L.

One finds an equilibrium shape of the interface when the background temperature f
AT (written in terms ofU) is adjusted dynamically so as to maintain the velocity of
the interface at zero as measured longthaxis. Thus,AT is increased if the velocity
decreases and decreased if it grows. The effective anisotropy is inferred by fitting
computed interface to an equation of the form

R(#) = Ro(1+ €¢f1COSH), (36)

whereR(#) is the radial distance from the center of the crystal to its interfacepahe
polar angle. The effective anisotropy; represents the modification of the anisotrapy
due to the grid. Figure 6 illustrates a crystal grown to equilibrium using an input anisotro
€ =0.04. Using Eq. (36) we founels = 0.041, within 5% ofe. Similar accuracy was found
for e =0.02, 0.03, and 005.

We also tested for grid anisotropy by rotating the grid by, 4#hich should represent the
lowest accuracy for square elements. We compared the tip speed of dendrites grown ir
direction to that of dendrites whose principal growth direction is alongthgis. Figure 7
shows the tip velocity for the case of a dendrite grown at 0.55(¢ =0.05, D =2,, =0,
dt=0.016 AXmin =0.4) compared with the same case when growth occurs along t
x-axis. The tip velocity approaches an asymptotic value within approximately 5% of t
tip velocity computed when the anisotropy is aligned withxthdirection.

C. Convergence and Grid Resolution

We tested the convergence of solutions as a function of the minimum grid spexing
We used an undercooling @f = 0.55, with D =2, dt =0.016, AXmin=0.4, and set to
simulateg =0. The parametey = 1.8, which assured that regions of rapid change of
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FIG. 6. The equilibrium shape of the interface, for an input anisotrepy0.04. The measured effective
anisotropye = 0.041.

andU were always encompassed in the regions of highest grid resolution. We exami
the tip speed of a dendrite for3< Axmin < 1.6, finding relatively good convergence of
the tip speed to theoretical prediction of microscopic solvability theory discussed abc
Figure 8 shows the asymptotic steady-state tip velocity for each case, superimposed o
solid line, which is the result of solvability theory far = 0.55. It is surprising that the so-
lution convergence is rather good even fot,, = 1.6. We have found similar convergence
properties for the case &f = 0.25. Specifically, usingh Xmin = 0.4 andA Xmin, = 0.78 gives
essentially identical results.

0.05

0.04 ——— Solvability
GO A=0.55, v=0
@---0A=0.55, y=1.8
<+ — < A=0.55, =18, 6, =45 degrees
Q
o
=]
>
= SRl = DR = S~ R = B "< ey
0.00 L L L
0.0 1000.0 3 2000.0 3000.0
time/t,

FIG. 7. The time evolution of the tip velocity of a dendrite growing in the presence of surface tensic
anisotropy forA =0.55. Data are shown for the cases where the dendrite is moving ir-theection with
two grid layering patterns, and along the’4isie. The horizontal solid line represents the analytic prediction of
microscopic solvability.
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AX

min

FIG. 8. Asymptotic steady-state velocity as a function of minimum grid spagirg,, the for casex = 0.55,
D=2dt=0.016

The introduction ofy in the error function¥ gives us the freedom to tune the degree tc
which the fine grid layering encompasses the thermal field as well ap fiedd. Setting
y =0 leads to a uniform-like mesh at the highest level of refinernahltaround the most
rapidly changing regions @f, while theU -field becomes encompassed in arather disorderl
combination of quadrilateral and triangular elements. We found that this effect can incre
the tip-speed error by several percent, as well as increase fluctuations in tip speed. Incre:
y produces a smooth layering of coarser uniform-like meshes ahead ¢fftblel, corre-
sponding to region of large gradientslin Figure 9 compares the mesh around the tip of :
dendrite grown at\ = 0.65 fory = 0 andy = 4. The figure illustrates the gradual mesh lay-

@ iR me
HOEERN P HHHH |
1 : T T
3 - i |
<5 ! S i f
T~ [ ia
LT R fijS
(b)
[ 1 = \ :
= LY
o] A A/
e
A | 1] iy
7 =
5]

FIG.9. Thefinite element mesh around a dendrite branch growing-a0.65, showing the grid configuration
for (@) y =4 and (b)y =0. The grey-shaded lines represent isotherms ranging #6165 < U < 0.02.
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FIG. 10. The tip velocity of a dendrite fo =0.3. Data are shown for two grid-layering patterns. The
horizontal solid lines represent the analytic prediction of microscopic solvability.

ering encompassing the thermal fieldfoe 4. InFigure 9P =1, dt = 0.016, AXnin=0.4,
and2 is chosen to simulatg = 0. Figure 7 also shows the tip speed foe= 0.55 for the
casesy =0 and 1.8, while Fig. 10 shows the tip velocity for a dendrite grown at 0.3
with y =0 and 20, respectively. In Fig. 10, = 10, AXmjn = 0.4, dt=0.048, and8 =0. In
this case the higher value fgrallows the tip velocity to approach within approximately 5%
of the solvability answer, as in Ref. [30]. Raisipdurther does not produce any significant
changes in tip speed.

The larger error for the\ = 0.3 data (relative to the& = 0.55 case) is likely due to the
accuracy of the asymptotics we use in our simulations, which are strictly valid in the lir
of small interface Peclet number Pe, where

W=\7(A,6)D=\7(A,e)k 37)

Pe=V A, e)—
¢ )do a ap a1

and\7(A, ¢) is the dimensionless tip velocity. At low undercooling we must use larger vall
of D (or, equivalentlyW/d,) in order to decrease simulation times. We checked the effe
of increasing Pe by simulating dendrites/at= 0.3 with D =20, maintaining8 = 0. We
found that the tip velocity remained within 12% of the solvability prediction. This effect
a finite-Pe correction becomes even smaller for undercooling<.3, assumingd < 20,
since dimensionless velocit\i is adecreasingunction of A. Using\7 determined from
solvability theory to estimate the magnitude of Pe, we find thatfer0.3 (D =5, W/d, =
18), Pe=0.012 while for theA =0.1(D =13, W/d, =23) computations presented in
Section V, Pe=0.00011. Similarly, for the casA =0.25(D =13, W/d, = 23), also pre-
sented in Section V, Pe 0.0066.

V. DENDRITIC GROWTH USING ADAPTIVE GRIDDING

In this section we present results for two-dimensional solidification with and witho
interface anisotropy. We illustrate the robustness of our algorithm and use it, in particu
to investigate dendritic growth at low undercooling, presenting new results on dend
tip-speed selection.
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FIG. 11. The evolution of a crystal growing without interfacial anisotropy. Fhe 0 contours are shown,
superimposed on the finite element grids. Time advances from left to right, top to bottom.

A. Dendritic Growth without Surface Tension Anisotropy

When the anisotropy parametein Egs. (1) is set to zero, solidification proceeds withous
the emergence of any preferred direction. In this case it is well known that a seed cry
larger than a critical radius will eventually grow to become unstable to fluctuations and v
break into surface undulations via the Mullins—Sekerka instability [20]. Figure 11 show:
series of time steps in the evolution of a solidifying disk growa @t0, A =0.65, D =4,
and set to generatg =0, makingd, = 0.1385. We use 11 levels of refinement and ar
800x 800 system, making Xmin = 0.4. For coarser meshes the Mullins—Sekerka instabilit
sets in sooner due to grid noise. Asmi, is made smaller, grid noise becomes smaller, an
one must wait longer for the true “thermal noise” to set in and make the crystal interfe
unstable. The dynamically evolving grids are also shown. This figure clearly demonstre
how the grid creation scales with the arclength of the solidifying surface.

B. Dendritic Growth with Surface Tension Anisotropy

When surface tension anisotropy is present, a crystallizing disk forms dendritic branc
which travel along the symmetry axes of the anisotropy, driven by the anisotropy tc
steady-state tip velocity [6, 11-15]. As a verification of our algorithm we measured
velocities and shapes for dendrites grown at intermediate undercoolings. Figure 12 sk
the dimensionless tip velocit§V d,/ D) versus time forA =0.45 and 065 ande = 0.05.
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FIG. 12. The time evolution of the dimensionless tip velocity o= 0.45 and 065. The horizontal lines
represent solvability theory. Theé = 0.65 case includes data for three system sizes. The data have been shif
up by 0.025 for clarity.

In Fig. 12 the dimensionless diffusivitie® =3 and 1 and the dimensionless capillary
length ared, = 0.186 and 0.544, respectively. In both casdms been set to simulge=0
kinetics at the interface, while =4 and 1.8, respectively. These valuesyofre chosen
so as to minimize grid-layering error. The solid horizontal lines represent the theoreti
values obtained from microscopic solvability theory. In all cases the converged veloci
are within a few percent of the theoretical prediction. The cast f0.65 includes data
for three systems sizes. These system-size effects are typical for intermedgtewing

a relatively rapid leveling to an asymptotic speed to within a few percent of that predict
by solvability theory. Figure 13 also shows a plot of the dendrite tip shapes produced
our simulations, superimposed on the shapes predicted by solvability theory.

=
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/g //
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9’ /’j i
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-75.0 o . = L
~150.0 -100.0 -50.0 0.0
x/d,

FIG. 13. The asymptotic dendrite tip shapes fde= 0.3, 0.45, and 0.55 (data points). The dashed lines are
the shapes predicted by solvability theory.
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FIG. 14. The time evolution of the tip velocity for undercoolidg= 0.25 and 0.10.

C. Dendritic Growth at Low Undercooling

At lower undercooling we encounter significant finite-size effects which cause the tip \
locity to deviate from the solvability prediction. Figure 14 shows the evolution of the tip v
locity for A = 0.25 in two different system sizes. For a system of sige- 6400x L, =400,
the velocity goes to within a few percent of the solvability prediction. For a system si
6400x 3200 the tip velocity decays toward a value that exceeds the solvability predicti
by 8%. This effect is even larger at= 0.1, also shown in Fig. 14, where the tip speed is
unconverged after a much larger simulation time. The lowest recorded velocity is still o
three times the steady-state velocity predicted by solvability theory.

To understand this finite-size dependence of tip velocity at low undercooling, we n
that at lowA, the thermal fields of the two dendrite branches overlap, producing a thern
envelope very different from that which emerges for the single, isolated dendrite brai
assumed in solvability theory. At large undercooling, each dendrite arm quickly outrt
the other’s thermal boundary layer, and solvability theory should apply, as is seen in Fi
whereA =0.7. The conditions of solvability theory can be better approximated at lowe
undercooling if simulations are performed in a domain which is small in one direction. F
the simulation performed withh = 0.25 in a small box (6406 400), the branch in thg-
direction is extinguished by its interaction with the wall and the velocity quickly approach
the solvability prediction. However, when both branches are present, as in the simula
with A =0.25 in the larger box (6408 3200), their interaction leads to an increased tif
velocity because the dendrites are embedded in a circular rather than parabolic diffu:
field.

This is also clearly seen for a dendrite growing\at 0.1 in Fig. 15, where the dendrite
shape and its associated field are shownAer 0.1(D =13, dy=0.043 € =0.05, AX =
0.78, dt =0.08). The dendrite arms never became free from each other in this simulatic
causing the observed deviation from solvability theory shown in Fig. 14. We note tt
to avoid having the thermal field feel the effect of the sides of the box we perform ¢
simulations in computational domains for which ~ (5— 10) D/ V,,. To meet this criterion
the simulation forA = 0.1 was performed in a 10,240051,200 domain, which is about
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FIG. 15. Dendrite mesh and isotherms for undercooliad =0.1 (a) The full domain with dimensions
102,400x 51,200. The growing dendrite is in the lower left corner. (b) A close-up displaying the dendrite tig
approximately 1,300 units from the origin, while the temperature field spreads to about 5,000 units.

10D/ V,. We note that the ratio of the largest to smallest element size in this simulati
is 217. A fixed mesh having the same resolution everywhere would contain® grid
points.

We can estimate the timé when the growth of the dendrite tip crosses over from th
transient regime where the branches interact to that where they become independe
equating the length of the full diffusion field(Bt*)¥2, to the length of a dendrite arm,
Vpt*. This gives the crossover time as

t*=9D/VZ (38)

The values fot* corresponding to the casés=0.45, 0.55, 0.65, and = 0.25 and 0.10
in Figs. 7, 12, and 14 confirm this scaling.

These results at low undercooling have important implications when comparing theor
experimental observations. In particular, sige~ A* asA — 0[45], making the transient
time t*~ A~8, it does not appear likely that independent predictions for tip speed a
radius, as given by solvability, are likely to be observed experimentally. In this regimn
the appropriate theory to use to obtain predictions of the tip speed and velocity is
which explicitly takes into account the long range effects of interacting thermal fields
other branches. Almgregt al. present one such approach [46]. In particular, study of re:
dendrites with sidebranches, growing at low undercooling, will require such treatment
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closing, we note that while the independent predictions of tip speed and radius dev
from that of solvability theory at low undercoolings, the dimensiongtability parameter
o* =2d,D/V, R? doesagree well with solvability theory.

Further investigation of the tip speeds at low undercooling, comparison with experimel
and new results for two-sided directional solidification will be reported in forthcomin
publications.

VI. CONCLUSION

In this paper we present an efficient algorithm used to study solidification microstructu
by adaptive refinement on a finite element mesh and to solve the phase-field model give
Egs. (1). Our algorithm was made particularly robust by using dynamic data structures
pointer variables to represent our evolving grid. As well, the modular nature of our co
offers an efficient method of expanding the code to different situations.

We found that our solution time scales with the arclength of the interface being simulat
allowing simulation of much larger systems and at very low undercoolings. In particul
simulations for undercoolings as low As= 0.1 are quite straightforward in systems larger
than 1M/ V,. This undercooling represents the upper limit of dendrite growth in exper
ments [2].

Dendrite tip velocities at intermediate to high undercoolings were found to agree w
solvability theory to within a few percent. At lo&, we found that the transient interaction
of thermal fields from perpendicular dendrite branches modifies the tip velocity from tt
given by solvability theory at times shorter than an estimated crossover time. Since
crossover time itself becomes larger/aglecreases, it is likely that transient effects will
play a leading role in determining the tip velocity at low undercooling. Furthermore, tf
suggests that at low the tip velocity in the presence of sidebranching will be differen
from that predicted by solvability theory.

Our algorithm is currently being used to examine directional solidification in mode
with unequal diffusivities in the solid and liquid phases. These results will be presentec
upcoming publications.
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