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The complexity of the world is contrasted with the simplicity of the basic
laws of physics. In recent years, considerable study has been devoted to
systems that exhibit complex outcomes. This experience has not given us
any new laws of physics, but has instead given us a set of lessons about
appropriate ways of approaching complex systems.

One of the most striking aspects of physics is
the simplicity of its laws. Maxwell’s equa-
tions, Schrödinger’s equation, and Hamilto-
nian mechanics can each be expressed in a
few lines. The ideas that form the foundation
of our worldview are also very simple indeed:
The world is lawful, and the same basic laws
hold everywhere. Everything is simple, neat,
and expressible in terms of everyday mathe-
matics, either partial differential or ordinary
differential equations.

Everything is simple and neat—except, of
course, the world.

Every place we look—outside the physics
classroom—we see a world of amazing com-
plexity. The world contains many examples
of complex “ecologies” at all levels: huge
mountain ranges, the delicate ridge on the
surface of a sand dune, the salt spray coming
off a wave, the interdependencies of financial
markets, and the true ecologies formed by
living things. Each situation is highly orga-
nized and distinctive, with biological systems
forming a limiting case of exceptional com-
plexity. So why, if the laws are so simple, is
the world so complicated? Here, we try to
give a partial answer to this question and
summarize general lessons that can be drawn
from recent work on complexity in physical
systems.

To us, complexity means that we have
structure with variations. Thus, a living or-
ganism is complex because it has many dif-
ferent working parts, each formed by varia-
tions in the working out of the same genetic
coding. One look at ocean or sky gives the
conviction that there is some natural tendency
toward the formation of structure in the phys-
ical world. Chaos is also found very frequent-
ly. Chaos is the sensitive dependence of a
final result upon the initial conditions that
bring it about. In a chaotic world, it is hard to
predict which variation will arise in a given
place and time. Indeed, errors and uncertain-
ties often grow exponentially with time.

A complex world is interesting because
it is highly structured. A chaotic world is

interesting because we do not know what is
coming next. But the world contains regu-
larities as well. For example, climate is
very complex, but winter follows summer
in a predictable pattern. Our world is both
complex and chaotic. From this, an elemen-
tary lesson follows:

Nature can produce complex structures even
in simple situations, and can obey simple laws
even in complex situations.

Creating complexity. Fluids frequently
produce complex behavior, which can be ei-
ther highly organized (think of a tornado) or
chaotic (like a highly turbulent flow). What is
seen often depends on the size of the observ-
er. A fly caught in a tornado would be sur-
prised to learn that it is participating in a
highly structured flow.

The equations that describe how the fluid
velocity at one point in space affects the
velocity at other points in space are derived
from three basic ideas:

Locality. A fluid contains many particles in
motion. A particle is influenced only by other
particles in its immediate neighborhood.

Conservation. Some things are never lost,
only moved around, such as particles and
momentum.

Symmetry. A fluid is isotropic and rota-
tionally invariant.

To make a computer fluid, construct (1) a
kind of square dance in which particles move
around, obeying the three basic ideas. In the
simplest case, the dance is done on a regular
hexagonal lattice (Fig. 1, upper panel). Each
particle is characterized by a lattice position
and by one of six directions of motion. These
arrows are momentum vectors. The square
dance starts when the caller says “Prome-
nade”; this call instructs each dancer to pro-
ceed one step in the direction of its arrow
(Fig. 1, middle panel). And then the caller
says “Swing your partner.” This is an instruc-
tion to rotate all the arrows on a given site
through 60°, if they happen to add up to zero
total momentum (Fig. 1, lower panel). Notice
that both particle number and momentum are
conserved in each step. Take thousands of
particles and thousands of steps, average a bit
to smooth out the data, and thereby find a
pattern of motion identical to fluid motion.
The square dance behaves like a fluid simply
because its steps obey the three fundamental

laws of fluid motion (2).
Gradually, through examples like this, it

has dawned on us that very simple ingredi-
ents can produce very beautiful, rich, and
patterned outputs. Thus, our square dancers,
through their simple hops and swings, pro-
duce the entire beautiful world of fluids in
motion. For simple elementary actors to pro-
duce patterned and complex output, we re-
quire many events. Our example included
many events because it had many actors and
much time.

For physicists it is delightful, but not sur-
prising, that the computer generates realistic
fluid behavior, regardless of the precise de-
tails of how we do the coding. If this were not
the case, then we would have extreme sensi-
tivity to the microscopic modeling—what
one might loosely call “model chaos”—and
physics as a science could not exist: In order
to model a bulldozer, we would need to be
careful to model its constituent quarks! Na-
ture has been kind enough to have provided
us with a convenient separation of length,
energy, and time scales, allowing us to exca-
vate physical laws from well-defined strata,
even though the consequences of these laws
are very complex. But we might not be so
lucky with complexity in biological or eco-
nomic situations.

Understanding complexity. To extract
physical knowledge from a complex system,
one must focus on the right level of descrip-
tion. There are three modes of investigation
of systems like this: experimental, computa-
tional, and theoretical. Experiment is best for
exploration, because experimental techniques
(combined with the human eye) can scan
large ranges of data very efficiently.

Computer simulations are often used to
check our understanding of a particular phys-
ical process or situation. In our fluid dynam-
ics example, the large-scale structure is inde-
pendent of detailed description of the motion
on the small scales. We can exploit this kind
of “universality” by designing the most con-
venient “minimal model.” For example, most
fluid flow programs should not be modeled
by molecular dynamics simulations. These
simulations are so slow that they may not be
able to reach a regime that will enable us to
safely extrapolate to large systems. So we are
likely to get the wrong answer. Instead, we
should model at the macro level, using large
time steps and large systems. For example,
some computational biologists try to simulate
protein dynamics by following each and ev-
ery small part of the molecule. The result?
Most of the computer cycles are spent watch-
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ing little CH groups wiggling back and forth.
Nothing biologically significant occurs in the
time they can afford.

Use the right level of description to catch
the phenomena of interest. Don’t model bull-
dozers with quarks.

This lesson applies with equal strength to
theoretical work aimed at understanding
complex systems. Modeling complex sys-
tems by tractable closure schemes or compli-
cated free-field theories in disguise does not
work. These may yield a successful descrip-
tion of the small-scale structure, but this de-
scription is likely to be irrelevant for the
large-scale features. To get these gross fea-
tures, one should most often use a more
phenomenological and aggregated descrip-
tion, aimed specifically at the higher level.
Thus, financial markets should not be mod-
eled by simple geometric Brownian motion–
based models, all of which form the basis for
modern treatments of derivative markets.
These models were created to be analytically
tractable and derive from very crude phenom-
enological modeling. They cannot reproduce
the observed strongly non-Gaussian probabil-
ity distributions in many markets, which ex-
hibit a feature so generic that it even has a
whimsical name, fat tails. Instead, the mod-
eling should be driven by asking “What are

the simplest nonlinearities or nonlocalities
that should be present?”—that is, by trying to
separate universal scaling features from mar-
ket-specific features. The inclusion of too
many processes and parameters will obscure
the desired qualitative understanding.

Every good model starts from a question.
The modeler should always choose the cor-
rect level of detail to answer the question.

Complexity and statistics. As a fluid
moves around, it may carry with it some
“passive” elements that do not themselves
influence the flow. Both energy and the den-
sity of impurities undergo this kind of mo-
tion, in which they convect (go with the flow)
and diffuse (move randomly). The convective
motion tends to move initially distant regions
of the fluid close to one another, thereby
producing enhanced gradients. The diffusion
tends to smooth out the gradients.

In many situations, these “passive scalars”
are carried along by a rapid and turbulent
flow, so that the convective mixing tends to
dominate the diffusion. Computer simula-
tions and experiments show that the density
of the scalar soon develops a profile in which
there are many flat regions surrounded by
abrupt jumps. The flat regions are produced
by the combined effects of convection and
diffusion in well-mixed regions of the sam-

ple. However, because the density must gen-
erally follow the initial gradient, mixed re-
gions must be separated by jumps.

This behavior, in which the system is
dominated by really big events, is called in-
termittency. Intermittency seems to be a
ubiquitous feature of dynamical systems. The
weather turns stormy suddenly. There are ice
ages. The stock market crashes. A plague
takes hold. An airplane runs into turbulence.
In every case, there is a big jump in the
behavior of a dynamical system, and that big
jump can have big human consequences.

These ubiquitous jumps come in all sizes,
with the big jumps being less likely. Empir-
ically, the size of the jumps is often given by
a probability distribution, which for large
jumps takes the form

P( jump) 5
1

2s
expS2

?jump?

s D (1)

(3), where s is the standard deviation. Con-
trast this with the usual Gaussian form

P(jump) 5
1

(2ps)1/2 expF2
~ jump)2

(2s2) G (2)

which has been the usual guess in statistical
problems since the time of Galton. Chaotic
and turbulent systems often show exponential
behaviors, like Eq. 1. Improbable (very bad)
events are much more likely with the expo-
nential form than with the Gaussian form (Eq.
2). For example, a 6s event has a chance of
10–9 of occurring in the Gaussian case,
whereas with the exponential form the chance
is 0.0025. Estimates, particularly Gaussian
estimates, formed by short time series will
give an entirely incorrect picture of large-
scale fluctuations. These considerations have
important consequences in, for example, fi-
nancial markets, as emphasized recently by
Mandelbrot (4). Thus, we come to another
lesson:

Complex systems form structures, and
these structures vary widely in size and du-
ration. Their probability distributions are
rarely normal, so that exceptional events are
not that rare.

The development of complexity in phys-
ics. Long ago, Katchalsky (5) and Prigogine
(6) described the formation of complex struc-
tures in nonequilibrium systems. Their “dis-
sipative structures” could have a degree of
complication that could grow rapidly in time.
It is believed that comparably complex struc-
tures do not exist in equilibrium. Turing (7)
described a mechanism, involving reaction
diffusion equations, for the development of
organization in living things. As we have
seen from the examples quoted here and
many others, in nonequilibrium situations
many-particle systems can get very compli-
cated indeed (8).

It is likely that this tendency is the basis of
life. A restricted version of this idea is given

Fig. 1. Three stages in the update
algorithm of a lattice gas. Between
the upper and middle panels, each
particle moves in the direction of
its arrow to arrive at a nearest
neighboring site. Next, particles
“collide” whenever the total mo-
mentum on a site is zero; these
collisions occur between the mid-
dle and lower panels.
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in Bak, Tang, and Wiesenfeld’s “self-orga-
nized criticality” (9). In an essay entitled
“More Is Different,” Anderson (10) described
how features of organization may arise as an
“emergent” property of systems. An example
of this point of view is given by work on
complexity “phase transitions” and accompa-
nying speculations that various aspects of
biological systems sit on a critical point be-
tween order and complexity (11).

The next few years are likely to lead to an
increasing study of complexity in the context of
statistical dynamics, with a view to better un-
derstanding physical, economic, social, and es-
pecially biological systems. It will be an excit-
ing time. As science turns to complexity, one
must realize that complexity demands attitudes
quite different from those heretofore common
in physics. Up to now, physicists looked for
fundamental laws true for all times and all

places. But each complex system is different;
apparently there are no general laws for com-
plexity. Instead, one must reach for “lessons”
that might, with insight and understanding, be
learned in one system and applied to another.
Maybe physics studies will become more like
human experience.
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Complexity in Chemistry
George M. Whitesides* and Rustem F. Ismagilov

“Complexity” is a subject that is beginning to be important in chemistry.
Historically, chemistry has emphasized the approximation of complex
nonlinear processes by simpler linear ones. Complexity is becoming a
profitable approach to a wide range of problems, especially the under-
standing of life.

“Complexity” is a word rich with ambiguity
and highly dependent on context (1). Chem-
istry has its own understandings of this word.
In one characterization, a complex system is
one whose evolution is very sensitive to ini-
tial conditions or to small perturbations, one
in which the number of independent interact-
ing components is large, or one in which
there are multiple pathways by which the
system can evolve. Analytical descriptions of
such systems typically require nonlinear dif-
ferential equations. A second characterization
is more informal; that is, the system is “com-
plicated” by some subjective judgment and is
not amenable to exact description, analytical
or otherwise.

In chemistry, almost everything of interest
is complex by one or both definitions. Con-
sider the design and synthesis of a simple
organic substance (,102 covalently bonded,
first-row atoms) as a candidate drug—a rep-
resentative activity for organic, medicinal,
and biological chemists. A single step in the
multistep synthesis of such a substance might
involve 1022 molecules of several types (each

comprising as many as 102 anharmonically
oscillating bonds) and several times this num-
ber of interacting nuclei and electrons, all
immersed in 1024 molecules of solvent. The
synthesis itself might proceed by perhaps 10
different strategies (that is, sequences of re-
actions) for making and breaking bonds and
for generating the intermediate compounds
that ultimately result in the final compound;
each strategy might have many thousands of
possible variants differing in synthetic detail.
The design of a molecule that has the right
properties (shape, surface properties, and as-
sociated electrostatic fields) to interact spe-
cifically with one part of the surface of a
target protein molecule presents yet another
set of complicated challenges (Fig. 1) (2).

Faced with the impossibility of handling
any such real system exactly, chemistry has
evolved a series of approaches to the treat-
ment of complex systems, which range from
reasoning by analogy, through averaging, lin-
earization, drastic approximation, and pure
empiricism, to detailed analytical solution.
The study of complexity in systems of reac-
tions (or of processes or of properties) that
can be described by nonlinear equations has
been limited to the few that are both complex
enough to be interesting and simple enough
to be tractable. The emphasis in thinking

about complicated systems has been to find
methods that are predictive, even if they are
nonanalytical. Philosophically, chemistry is a
branch of science that attempts to predict and
control rather than simply to observe and
analyze: A large industrial reactor that pro-
duces heat in unpredictable bursts is more
immediately terrifying than interesting. The
optimization of combustion for the produc-
tion of work, the understanding of mecha-
nisms of drug action, and the development of
strategies for organic synthesis are all prob-
lems of great complexity. They are also prob-
lems of sufficient urgency, which must be
solved as best as possible, even if analytical
solutions for them are not practical.

Chemistry is now evolving away from the
manipulation of sets of individual molecules
and toward the description and manipulation
of systems of molecules, that is, living cells
and materials. This evolution toward com-
plexity is, perhaps counterintuitively, gener-
ating new types of problems that are suffi-
ciently simple in some aspects for “complex-
ity” in its analytical sense to provide a valu-
able way of thinking about them. These
problems are often at the border between
chemistry and other fields such as physics,
biology, biophysics, and materials science.
They may represent efforts to describe prop-
erties (for example, flux through a catalytic
pathway in metabolism, distribution of green-
house gases in the atmosphere, and fracture
toughness of a polymer) that strongly depend
on time, space, and conditions and in which
the granularity of the description that is de-
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