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in the perpendicular direction. This could be associated 
with the formation of highly anisotropic domains per- 
pendicular to the deformation direction. 
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ABSTRACT We present a simple physical picture of the way in which topological entanglements enter into 
a statistical mechanical theory for the solid state of randomly cross-linked macromolecules. Our approach, 
which does not require the use of invariants, focuses on the way in which the system explores its phase space. 
We summarize the results of a detailed calculation and briefly discuss their experimental consequences. 

1. Introduction 
It has long been recognized that cross-linked systems of 

flexible macromolecules pose extraordinary difficulties for 
statistical mechanics. These difficulties result from the 
combination of two factors: the chainlike nature of the 
molecules and the presence of permanent cross-links be- 
tween the chains. These same two factors are also believed 
to be responsible for the spectacular elastic response of 
cross-linked systems such as gels and rubber. 

We believe that a prerequisite for a genuine statistical 
mechanical theory of the elastic response of these systems 
is a sound understanding of the undeformed solid state. 
This paper is intended to explain the physical considera- 
tions underlying our recently proposed theory of the liq- 

t University of Illinois a t  Urbana-Champaign. * Stanford University. 

uid-to-solid transition in cross-linked macromolecules.' 
Although much has been understood about gels and 

rubbers from a phenomenological point of view? a genuine 
microscopic theory must confront the topological com- 
plexity of cross-linked systems. The basic problem can be 
easily seen from Figure 1. Figure l a  shows a portion of 
a cross-linked system, where two chains, labeled A and B, 
are cross-linked to the network in such a way that chain 
A lies in front of chain B. The chains cannot pass through 
each other or the rest of the network. Consequently, it is 
impossible, as the system undergoes ita dynamics, for the 
chains to move into the configuration depicted in Figure 
lb. In this configuration, chain B lies in front of chain A, 
yet the chains are cross-linked at  precisely the same points 
as in Figure la. The two configurations are said to be 
topologically inequivalent; if the system is formed in the 
configuration of Figure la, it will always preserve the to- 
pological relationships between the chains. A network of 
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Figure 1. Two chains, A and B, in a network are cross-linked 
in such a way that their topological relationship with each other 
cannot change. The figure shows two topologically inequivalent 
configurations, (a, top) and (b, bottom). 

cross-linked chains will have a well-defined, but complex, 
set of topological relationships between the chains, which 
we shall refer to as the topology of the network. 

A corollary of this observation is that the specification 
of the positions of the cross-links does not uniquely specify 
the state of the system. To see this, recall how the 
cross-links might be specified in a statistical mechanical 
theory. The cross-links are not fixed in space; all that they 
do is to ensure that, e.g., monomer 174 on chain 18 is 
always constrained to be at the same point in space as, e.g., 
monomer 666 on chain 7. Proceeding in a similar fashion, 
one can construct a table which describes all the cross-links 
by listing, for each cross-link, which monomers on which 
chains are constrained to be at  the same point in space. 
Such a table, however, does not contain enough informa- 
tion to reconstruct a given system. There are many dif- 
ferent topologies that are consistent with the cross-links 
as specified by such a table. For example, in Figure 1 are 
shown two topologically inequivalent configurations, which 
nevertheless are specified by the same cross-link tabula- 
tion. 

A related issue is the question of the definition of the 
term “entanglement”. This term is often taken to mean 
a transient configuration in which a portion of one chain 
wraps around a portion of another chain in some com- 
plicated way. This configuration is transient, although 
possibly long-lived on the time scale of local motions, 
because the dynamics allows this configuration to become 
undone. Such configurations do not require special 
treatment if one is considering the thermal equilibrium of 
the system. The above definition of entanglement is not 
the one that we shall adopt here. By entanglement we 
shall refer only to configurations which cannot be undone 
by the dynamics, even if one waits forever. An example 
is the situation depicted in Figure la. The combination 

of the cross-links and the impenetrability of the chains 
means that the dynamics of the system can never allow 
chain A to move behind chain B. They are entangled. 

This, then, is the problem: how does one perform sta- 
tistical mechanical calculations taking into account the fact 
that the network exists in one, and only one, topology? 
The purpose of the present paper is to explain in simple 
physical terms our recently proposed solution to this 
problem. 

A variety of attempts have been made to answer the 
question above, most of which fall into one of three cate- 
gories: (1) ignoring the p r ~ b l e m , ~  (2) tube models: and 
(3) topological invariants.6 Approaches 1 and 2 have 
proven to be useful phenomenological tools but are not 
claimed to be systematic theories. Approach 3 has severe 
mathematical difficulties, to be discussed below, and it has 
not been possible to implement it beyond the simplest 
model problems. 

The basic idea in the tube models is to restrict the chain 
to lie close to some notional mean position in the lattice 
by imprisoning it within a random tube. The random tube 
represents the confining effects of the neighboring chains. 
For a detailed review of this approach, see the articles cited 
in ref 4. 

The approach using topological invariants assumes that 
there exists a set of invariants for each topology of the 
network. A topological invariant is a number, 7, which can 
be computed by a specified procedure for each configu- 
ration C of the chains of the network. We shall designate 
this procedure as if it were a function T(C). Thus, 7 = 
T( C). All those configurations which are topologically 
equivalent give the same value for the topological invariant. 
Furthermore, no two topologies of the network give the 
same value for the topological invariant. Thus, if one 
knows the value of the topological invariant, one can 
uniquely determine the topology of the network; con- 
versely, if one knows the topology of the network, one can 
uniquely determine the value of the topological invariant. 
The statistical mechanics of the system in a given topology 
can then be calculated, respecting the requirement that 
the topology cannot change. The partition function, 2, 
depends on the particular topology chosen; thus 2 is a 
function of 7 .  2 is calculated by performing a sum over 
all configurations of the chains, with their Boltzmann 
weights, but discarding configurations C‘with T(C9 # 7: 

(1.1) 

where kB is Boltzmann’s constant, T i s  temperature, and 
E({CJ) is the energy of the system in configuration C. 
Unfortunately, there are no known procedures which have 
all the properties required above of T(C). All of the 
“invariants” which have been proposed in the past- 
including the Gaussian invariant and the Alexander 
polynomials-have many topologically inequivalent con- 
figurations which give the same numerical value for 7. 

Thus, these invariants cannot be used for T(C). Even if 
this had not been the case, the task of implementing the 
constraint in eq 1.1 would almost certainly be impossible. 

In this paper, we will argue that the difficulties men- 
tioned above can be avoided by considering the space, s, 
of all configurations of the chains in the system. We will 
show that each topology of the system, consistent with a 
specified set of cross-links, defines a unique subregion of 
S. This is equivalent to the prescription of eq 1.1 and is 
thus impossible to implement, in general. 

For many purposes, however, the partition function 
contains more information than is required. For example, 
in this paper, we shall concentrate on the question of 

2(7) = xe-E(lCl)/kBT8(7 - T(C))  
IC1 
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composed of cross-linked macromolecules is not ergodic: 
in fact, the ergodicity can be broken to varying degrees, 
corresponding to the presence of topology and the phase 
of the system. 

A. Topology. Consider a container of finite volume V ,  
filled with long flexible chains. We shall suppose initially 
that the chains are not cross-linked and do not interact. 
All possible configurations are accessible to the system, and 
we shall designate the space of all possible configurations 
by S. 

Now suppose that the system is cross-linked at random. 
The cross-links permanently constrain two monomers on 
two (or perhaps the same) chains to have the same position 
in space, although this position is, of course, not fixed. The 
constraint means that there are many configurations in S 
which are now inaccessible. For example, if there is a 
cross-link between chain 26 at monomer 135 and chain 14 
at monomer 333, then no configurations are allowed where 
these two monomers do not occupy the same point in 
space. Thus, the system of cross-linked, but still nonin- 
teracting, chains explores a region of configuration space, 
S,, which is a subset of S. The system is ergodic, but over 
a reduced set of configurations. 

Next, we suppose that at a time to we turn on the 
hard-core repulsions between the chains. We may still 
allow the cross-linked monomers to occupy the same point 
in space, or if the reader is uncomfortable with this, we 
might require that they are within one atomic distance 
from each other or that the chains are infinitesimally thin. 
The important point is that the chains are not able to pass 
through each other during the course of their dynamics. 
At the instant when the interactions are switched on, the 
chains are in a configuration C with some topology. 
Thereafter, the chains must be trapped permanently in 
that topology. This means that the set of configurations 
available to the chains is a subset of S,. We shall refer to 
the set of configurations available to the cross-linked, in- 
teracting chains as Sz. The system is ergodic, but now over 
S2, which is a subset of S1. S2 is the set of all configurations 
which are topologically equivalent to C. 

At the time to, the system might have been in a different 
configuration, C’. In this case, if C and C’are not topo- 
logically equivalent, the system will be ergodic over the set 
of configurations topologically equivalent to C’. We might 
call this set Si. In general, then, we can see that there will 
be many possible subregions of configuration space in 
which the system can become trapped when we turn on 
the interaction. S2 and SI2 are but two subregions of an 
infinite set of subregions. We will denote these by Szfi, p 
= 1 ... m. These subregions of configuration space will be 
disjoint, because it is not possible for a given configuration 
of the chains to be simultaneously in more than one to- 
pology. Thus, we see that the combination of cross-links 
and impenetrability of the chains has broken the original 
configuration space S into smaller, disjoint regions such 
as S2 and S’2. The system will be ergodic only over the 
configurations contained in one of these subregions. 

To summarize, then, the effect of cross-links and im- 
penetrability is to cause the system to become trapped into 
a subregion of the configuration space of a cross-linked but 
penetrable set of chains. 

B. Phase Transition. Let us now ask what happens 
to a statistical mechanical system as it goes through a 
phase transition. We will start by considering a system 
of point particles; once we have exposed the principal ideas, 
we shall directly apply them to the system of cross-linked 
macromolecules. Our concern is the phase transition to 
the solid state, and accordingly we shall need to define 

whether or not a system with a given number of cross-links 
is a liquid or a solid. We will show that it is possible to 
define an order parameter which has the following prop- 
erties: (1) it can distinguish between the three possible 
thermodynamic phases, liquid, crystalline solid, and 
equilibrium amorphous solid, and (2) it can be expressed 
by summing a certain quantity over all configurations in 
S, and not just those configurations within one particular 
subregion of S which corresponds to one particular to- 
pology. This order parameter is constructed in such a way 
that it displays a signature of the way in which S is divided 
into subregions corresponding to the possible topologies 
of the network. 

We have been able to calculate, approximately, this 
order parameter as a function of the density of cross-links 
in a gel or rubber and find that there is a second-order 
phase transition from a liquid to an equilibrium amorphous 
solid, as the cross-link density exceeds a critical value. 
These calculations have been described briefly elsewhere,, 
and are the subject of a forthcoming detailed report.6 The 
present paper is intended to provide a physically motivated 
account of our theory, without the obfuscations of technical 
details. Accordingly, we shall mostly be content with 
descriptive arguments. It should be emphasized, however, 
that the reasoning presented in sections 2 and 3 is precise 
and in principle does not rely on any approximations. In 
particular, it is valid for realistic choices of E((C}).  In 
contrast, when we actually attempt to implement the ideas 
presented in sections 2 and 3 to compute the phase dia- 
gram for a system of randomly cross-linked macromole- 
cules, we shall be forced to make approximations, as de- 
scribed in ref l, among which is the use of the Edwards 
Hamiltonian for E((C}). 

This paper is organized in the following way. In section 
2, we present elementary arguments showing that for a 
system of randomly cross-linked macromolecules S may 
be divided into two distinct classes of subregion. One class 
arises from the various topologies of a network with a given 
set of cross-links. The other class arises when there is a 
phase transition to the solid state. Section 3 describes how 
we construct the order parameter for the liquid-solid 
transition of the system, and section 4 summarizes the 
results of our detailed calculation using the Edwards 
Hamiltonian and briefly mentions some experimental 
consequences. 

2. Structure of Configuration Space for a 
Cross-Linked System 

We now present simple physical considerations which 
determine the structure of configuration space for a system 
of cross-linked macromolecules. There are two principal 
considerations. The first is related to the manifestation 
in configuration space of the many possible topologies 
available to a system once the cross-links have been 
specified. The second set of considerations is related to 
the possible occurrence of phase transitions in the system. 
In particular, we shall be concerned with the transition 
from a liquid state to a solid state. 

The basic postulate from equilibrium statistical me- 
chanics which we shall use is that of ergodicity. Loosely 
speaking, if, during an arbitrarily long time interval, a 
statistical mechanical system explores, with arbitrary ac- 
curacy, every configuration available to it, then the dy- 
namics is said to be ergodic. For example, an ideal gas with 
infinitesimally weak interactions in a container of finite 
volume V is ergodic. During an infinitely long time in- 
terval, the particles may explore every point in the volume, 
with arbitrary momentum, subject only to the constraint 
that energy is conserved. As we shall see below, a system 
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what we mean by a solid in statistical mechanics. We will 
define a solid in two closely related ways. 

The first definition is that a solid resists infinitesimal 
static shear, while a liquid does not. In other words, if one 
slowly tries to shear a solid, it will exert a restoring force. 
The significance of the term static is this: if we shear a 
liquid, at first there will be a restoring force, but if we wait 
a sufficiently long time, then the force will die away. On 
the other hand, a solid will maintain a restoring force 
forever. 

The second defintion is thermodynamic, and strictly 
applies to an infinite system in thermal equilibrium. It 
is that the solid state spontaneously breaks the transla- 
tional invariance of the Hamiltonian of the system.I To 
see what this means, recall that the Hamiltonian H is 
simply the sum of the kinetic energy K and potential en- 
ergy V of the system. Usually the potential energy will 
only depend on the difference in positions between the 
particles, not the absolute positions. Thus, if we shift the 
origin of coordinates, the potential energy is unchanged. 
Similarly, the kinetic energy, which depends on the time 
derivative of the coordinates of the particles, is also un- 
changed when we shift the origin of coordinates. Thus the 
Hamiltonian is translationally invariant. On the other 
hand, even though the Hamiltonian is translationally in- 
variant, the state of the system need not be. A familiar 
example is the crystalline state. There, the atoms are 
localized in a periodic array, in contrast to the situation 
in a gas or liquid. In fact, even if the atoms are localized 
about positions which are randomly distributed in space, 
translational invariance is still broken. In summary, the 
onset of the solid phase occurs when the state of the system 
(as described by the density matrix, for example) spon- 
taneously breaks the translational invariance of the Ham- 
iltonian. The rigidity of the solid state is a feature which 
emerges from this symmetry breaking. A solid is not rigid 
because there are long-range forces holding it rigid. In- 
stead, it is the preference for the atoms to localize them- 
selves a t  certain poisitions with respect to their neighbors, 
in order to minimize the free energy, which confers the 
solid with rigidity. 

Let us now see how the liquid-to-solid transition is 
manifested in configuration space. In the solid state, atoms 
are localized about their mean position. There are many 
configurations available to the liquid state which are not 
accessible to the solid state. We shall call the set of con- 
figurations available to the solid S3. S3 is a subset of s. 
However, this is not quite correct. There are many possible 
ways in which the system could solidify; in particular, 
because the Hamiltonian is translationally invariant, if all 
the atoms localized around a position, e.g., 10 in. away from 
their mean positions specified by So, then that configu- 
ration would be equally favorable energetically. In fact, 
once we have chosen a particular state of the system, which 
breaks the translational invariance, we may generate an 
infinite number of other, equally acceptable states by 
simply translating our original state. The same remarks 
also apply to rotations, since the Hamiltonian will usually 
be rotationally symmetric too. 

Thus, when a liquid-to-solid transition occurs, the con- 
figuration space of the liquid is broken up into subsets Si  
where i = 1 ... m. The configurations in each subset S,’ 
are related by the symmetries of the Hamiltonian. That 
is to say, if we choose one configuration in one of the 
subsets, S: say, and translate it, e.g., 10 in., we will have 
generated a configuration in one of the other subsets, S399 
say. In fact, if we take each configuration in turn from SJ 
and translate it 10 in., we will generate all the configura- 
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tions in S399. The fact that by applying symmetry oper- 
ation of the Hamiltonian to all the configurations in one 
of the subsets generates all the configurations in all the 
other subsets is what we mean by saying that the subre- 
gions Si are related by symmetry. 

Now let us apply this picture to the case of the solidi- 
fication of a cross-linked macromolecule. We have already 
seen that the presence of topology implies that the system 
explores a subregion of the configuration space available 
to a cross-linked but noninteracting set of chains. Let us 
suppose that the system is ergodic in the subregion called 
Sp. Now suppose that by adjusting a parameter in the 
Hamiltonian, such as the pH of the solvent, we can cause 
the system to become solid. Then the subregion of phase 
space S2 will fragment further into a set of smaller su- 
bregions, S,’. Furthermore, these subregions are related 
by translational and rotational symmetry. 
Thus, the original configuration space of the cross-linked 

but noninteracting set of chains, S1, is now fragmented into 
subregions S2’, which are themselves further fragmented 
into subregions Si. Let us examine a particular subregion, 
S237 say, from the set of subregions S2’. This contains a 
set of subregions of the S3 type, which arose from the 
spontaneous breaking of translational invariance within 
the topology corresponding to S2l3I. Thus, this set of S3 
subregions are related by symmetry. On the other hand, 
suppose we consider two subregions of the S3 type, S31557 
and S317860, say; we suppose that the former is contained 
with S2l3I, while the latter is contained with S226. Since 
these S3-type subregions have distinct topologies (because 
they are contained within different S2-type subregions), 
they are not related by symmetry. 

Finally, we remark that this ergodicity-breaking scheme 
is not the most general, although it is certainly the simplest 
which we can envisage. Indeed, this ergodicity-breaking 
scheme is our proposed interpretation of the calculation 
summarized in section 4. There is, however, no reason to 
assume a priori that all subregions contained within a given 
subregion of the S2 type are related by symmetry; the 
calculation summarized in section 4 does not rule this out. 

3. Construction of an Order Parameter 
In the previous section, we showed that the configuration 

space for a set of cross-linked impenetrable macromole- 
cules can become rather complicated, particularly when 
there is a transition to the solid state. However, when one 
performs statistical mechanical averages, one must only 
include in the averaging those configurations over which 
the system is actually ergodic. This requires knowing how 
to specify the configurations in each subregion of config- 
uration space. In a complicated system such as that under 
consideration here, it is not known how to do this; although 
in simpler systems, such as Ising ferromagnets, this is 
possible. 

In this section, we describe an order parameter which 
is calculable, within the mean-field theory, by performing 
a statistical mechanical average over all the configurations 
in S1, and which detects whether or not S1 is fragmented 
into subregions S2 and S3. The method is due originally 
to Parisi, who applied it to solve the problem of the in- 
finite-range Ising spin glass.* 

The basic idea is to construct a subregion detector qUd. 
The superscripts u and u‘ designate two subregions of 
configuration space. We call qud the overlap between su- 
bregions u and u’, because it measures, in a sense to be 
discussed below, how similar the configurations are in the 
two subregions. For present purposes, we only need to 
know the following properties of qud: (1) qud is zero only 
if either u or d is a subregion of configuration space cor- 
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responding to the system being in the liquid state. (2) qUd 
= q"" if a and u' are related by symmetry. This can only 
happen if a and Q' describe states of broken translational 
symmetry, i.e., solids. In this case quo # 0. 

In fact, qUd is a function f of a set of quantities which 
compare the statistical mechanical average over the con- 
figurations in a and u' of the Fourier components of the 
monomer density fluctuations: 

C (exp(-ik.r;"))"(exp(-ik'-r;"))" (3.2) 

Here, r? is the position of the sth monomer on the ith 
chain, L is the degree of polymerisation, N is the number 
of chains in the system, and ( )" denotes a statistical me- 
chanical average taken over the configurations in the su- 
bregion a. The wavevectors k and k' are nonzero. We 
chose the function f in such a way that qUd did indeed 
satisfy properties 1 and 2. 

The way in which qud works is as follows. In a region 
of configuration space which corresponds to the system 
being in the liquid phase, the equilibrium expection value 
of the monomer density is independent of position, and 
so Fourier components of the monomer density fluctuation 
are zero. Thus, if either of the regions a or a' in eq 3.2 
corresponds to a liquid phase, then q& = 0, yielding qUd 
= 0. The only way to obtain a nonzero value for qUd is if 
both u and d correspond to solid phases, either crystalline 
or amorphous. The latter may be simply distinguished 
because the Fourier components of the density of a crystal 
are nonzero only for wavevectors satisfying the Bragg 
condition. 

Now we consider the possible outcomes of computing 
qUd for any pair of subregions u and d. Note that at this 
stage, this computation is still impossible, in general, be- 
cause we do not know how to specify the states in the 
subregions a and a'. 

Case 1: If either or both a and a' describe the liquid 
phase, then qUd is zero. Only when both u and d describe 
solid phases is qUd nonzero. 

Case 2: If there is no topology present, as in the soli- 
dification of noncross-linked (or nonpolymeric) substances, 
then we would expect that a crystal can be formed at  
sufficiently low temperature. In this case, all the subre- 
gions could be generated from symmetry operations on just 
one of the subregions a. Thus qUd would be nonzero and 
would take on a value independent of a and u'. 

Case 3: For the case at  hand, however, when the system 
solidifies, there are two categories of subregion: S2 and 
SB. Thus, although qUd will be nonzero, its value will de- 
pend on u and a'. Thus there will be a broad spectrum 
of values for qud. 

In conclusion, the way in which configuration space is 
broken up into ergodic subregions can be directly deter- 
mined by computing qud. 

4. Discussion 
Unfortunately, it is not possible to calculate qqd. Nor 

is it possible to calculate P ( q ) ,  the probability that, in 
thermal equilibrium, a pair of regions u and u' has an 
overlap qUd = q. However, it is possible, within a mean- 
field theory, to calculate [P(q) ] ,  the value of P(q) averaged 
over the possible ways of cross-linking the system. There 
are three possible functional forms for P(q),  corresponding 
to the three possible casea discussed in the previous section. 
These are sketched in Figure 2. 

In order to understand the phase diagram of the system, 
the strategy is to calculate [P(q)]  as a function of the 
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Figure 2. Schematic functional forms for the probabifity dis- 
tribution of the overlap. The three possible cases are (a, top) the 
existence of subregions of configuration space corresponding to 
the liquid state; (b, middle) configuration space being fragmented 
into symmetry-related subregions, corresponding to the existence 
of only one type of solid phase; and (c, bottom) confiiation space 
being fragmented into both symmetry-related and symmetry- 
unrelated subregions, corresponding to the existence of many 
possible types of solid phase. 

density of cross-links. At the liquid-to-solid transition, 
[P(q)] will change from one functional form to another. 
Based on the considerations of the preceding sections, we 
should expect to observe a transition between case 1 and 
case 3. The details of an approximate evaluation of [P(q)] 
have been summarized in ref 1 and will be reported in 
detail in a forthcoming publication.6 

The result of the calculation is as follows. We considered 
N chains with a mean number of cross-links N, in a volume 
V, at fixed temperature. The chains are flexible and in- 
teract through the 6 function pseudopotential introduced 
by E d w a r d ~ . ~  Crudely speaking, this potential gives an 
energy penalty X2 whenever two chains intersect and thus 
mimics the excluded-volume interaction between the 
chains. This includes not just the self-avoidance of the 
chains but also the interaction with the solvent. It is the 
osmotic pressure due to the interaction with the solvent 
which prevents the network from collapsing. Indeed, when 
h2 is sufficiently small, we find that the network does 
collapse. 

We study the regime where X2 is sufficiently large that 
the network is swollen and examine the behavior as we 
increase N,  from zero. We find that when N, 2 N / 2 ,  the 
system is a thermodynamic solid, i.e., translational in- 
variance is spontaneously broken, and the static shear 
modulus is nonzero. The transition is indeed between case 
1 and case 3, indicating that the configuration space has 
fragmented not only into subregions related by symmetry 
but also into subregions which are unrelated by symmetry. 
Very close to the transition, the Landau free energy has 
the same form as that found by Parisi in the context of 
the infinite-range Ising spin glass. The existence of sym- 
metry-unrelated subregions occurs there too and is often 
referred to as replica symmetry breaking. In light of the 
preceding considerations, we tentatively identify each 
symmetry-unrelated subregion of configuration space with 
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each possible topology of the network. 
In addition to the considerations presented in the 

present paper, which support this conclusion, two other 
pieces of circumstantial evidence for this conclusion emerge 
from the calculation itself. First, the critical number of 
cross-links at  the transition point is independent of X2. 
This implies that the transition to the solid state is not 
related to a finite energy scale but rather is due to a 
qualitative feature of the system; the increasingly complex 
topology with increasing N, is the most obvious candidate. 
Second, it is possible to perform the calculation of [P(q)] 
assuming the network is embedded in four-dimensional 
space. We do not find a transition to the solid state in this 
case, for any density of the cross-links. This is reasonable 
if the transition is related to the topology of the network, 
because in four dimensions, linear chains are not con- 
strained by entanglements. This is perfectly analogous to 
the situation of a two impenetrable, concentric rings on 
a two-dimensional surface. If the rings are constrained to 
lie on the surface, then the inner ring is permanently 
trapped within the larger ring. If the rings may move into 
the third dimension, however, then the inner ring is no 
longer constrained by the outer ring. We remark, as a 
caveat, that at this stage we cannot rule out the possibility 
that renormalization effects not presently included in the 
calculation will alter the result in four dimensions. 

At  this juncture, i t  is pertinent to discuss the relation- 
ship between our theory and percolation models.1° In the 
percolation models, it is assumed that the onset of rigidity 
occurs once there is an infinite network, and it is argued 
that gelation must be in the universality class of site-bond 
percolation. This assumption ignores the possible role of 
entangled chains in the transition to the solid state. In 
contrast, the present theory suggests that the transition 
to the solid state can occur as a result of a sufficiently 
complex topology rather than as a result of a sufficient 
degree of connectivity.” de Gennes suggested12 that the 
shear modulus depends on the fraction of cross-links in 
the same way that the conductivity of a network of resi- 
stors depends upon the fraction of conducting bonds; this 
analogy is not a rigorous argument and has been criticiz- 
ed.13 Moreover, the disorder in a randomly cross-linked 
macromolecule, which arises from the randomness of the 
cross-link positions, has no counterpart in percolation 
models. To see this, recall that each cross-link perma- 
nently constrains two particular monomers to be at  the 
same point in space. Consequently, all allowed configu- 
rations of the polymer chains must respect this set of 
constraints, one for each cross-link. This constraint on the 
configurations-technically referred to as “quenched 
disorder” because the cross-link is not able to equilibrate 
or adjust its position along the arc length of the chains-is 
not present in percolation models. Consequently, we would 
not expect a priori that percolation models would be ap- 
plicable to the case of irreversible gelation. Last, perco- 
lation models do not address the question of how rigidity 
emerges. In the simplest case, the elements of the model 
are rigid bonds on a lattice, so percolation models really 
address a question of architecture. On the other hand, the 
theory presented in ref 1 and in the present paper is a 
statistical mechanical theory. Rigidity is a consequence 
of thermodynamics. The elements of the theory are 
flexible chains, yet the system, in the thermodynamic limit, 
acquires the property of rigidity. In this sense, then, the 
present theory is a microscopic theory of the transition to 
the solid state, starting as it does from a physical model 
of flexible chains and solvent, without additional ad hoc 
assumptions about rigidity. Rigidity is an emergent feature 

, 

Solid State of Cross-Linked Macromolecules 953 

of the theory. An analogous situation occurs in the theory 
of supercond~ctivity.’~ There, phenomenological models 
(London and Ginzburg-Landau theories) were developed, 
in which the superconductivity was put in by hand (i.e,, 
London’s rigidity of the wavefunction). Eventually, it was 
shown,15 from a microscopic theory of the behavior of 
electrons, how superconductivity arose, without ad hoc 
assumptions. Superconductivity is, like rigidity, an em- 
ergent feature of a microscopic theory. 

We now turn to some of the experimental consequences 
of our theory. We find that the transition to the solid state 
as the density of cross-links increases beyond the critical 
density is a continuous transition and not a first-order 
transition. This has important consequences for the shear 
modulus, which should consequently exhibit dynamical 
scaling behavior16 at the critical cross-link density. Indeed, 
Winter and Chambonl’ have measured the real and im- 
aginary parts of the frequency (w)-dependent shear mo- 
dulus C ( w )  as a function of N, for a PDMS gel and report 
that at the gel point, G(w) is a power law function of w over 
about 4 decades of w. We interpret these observations as 
evidence for dynamic scaling at the transition to the solid 
state during gelation. It seems likely that similar behavior 
would occur during vulcanization. Work in progress is 
attempting to calculate the elastic response of cross-linked 
systems. 

In the present theory, where a continuous thermody- 
namic phase transition occurs to the solid state, dynamical 
scaling of the linear response functions follows automat- 
ically. Power law behavior in dynamical response functions 
is predicted to occur only at  the transition to the solid 
state. Away from the transition, other behavior can (but 
does not necessarily) occur. It is also important to note 
that in our theory, power law behavior in the time-de- 
pendent response functions does not arise from the ex- 
istence of an assumed fractal structure, which is simply 
“put in by hand”.I8 While it is certainly true that power 
law behavior can always be interpreted in terms of a fractal 
dimension, a genuine theory along these lines must account 
for the existence of a fractal structure-and hence power 
law correlations-only at the gel point. The present theory 
accomplishes this, in a sense, through the scale invariance 
which accompanies a second-order phase transition. 

The question of how to predict the value for the expo- 
nent of w in G(w)  is related to identifying the dynamic 
universality class: this is prescribed by the equations of 
motion for the cross-linked system. Work currently in 
progress is aimed at  addressing this issue. On the other 
hand, percolation models do not have any intrinsic dy- 
namics. This is reflected in the fact that it is a generating 
function, rather than a genuine partition function, which 
behaves in a nonanalytic way at the percolation threshold. 
Consequently, an additional assumption about the dy- 
namics is required to understand dynamical scaling of the 
shear modulus in this model. It should be recalled that 
there may be many different dynamical universality classes 
which exhibit the same static critical phenomena. 

Given all of the above, there remains the intriguing 
result that our calculation in ref 1 finds the same value for 
the critical number of cross-links (N,  = N / 2 )  as the Flo- 
ry-Stockmayer theory. Both calculations are mean-field 
calculations, but with apparently very different physics. 
A fuller understanding of this result would be very useful. 

Finally, we wish to discuss the reason for the apparent 
success of the Edwards pseudopotential in accounting for 
the topology of the network, despite the absence of genuine 
hard-core interactions. Two observations are pertinent 
here. First, our calculation is based on a mean-field theory. 
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Second, the only interactions in the system occur when the 
chains intersect, always leading to an increase in energy. 
since mean-field theory recognizes only low-energy con- 
figurations (and not fluctuations around them), all that 
is required of the interaction is that it produces minima 
in the energy. Replacing the Edwards pseudopotential by 
a hard-core interaction would not alter the results of 
mean-field theory. 
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On the Aggregation and Conformational States in Aqueous 
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ABSTRACT: Dilute solution properties of a succinoglycan sample from Pseudomonas sp. (purified 
SHELLFLO-S) have been studied by means of light scattering, viscosity, chiroptical spectmcopy, and differential 
scanning calorimetry experiments. The results c o l l e d  working in a wide range of NaCl concentrations clearly 
show that the polysaccharide undergoes a thermally induced, highly cooperative conformational transition. 
The nature of the transition is discussed. All evidence favors an initial partially aggregated state for succinoglycan 
in which single, helical chaina are laterally connected via side-chain interactions. Aggregation and conformational 
order are disrupted on heating. On cooling, only the pristine helical state of the polysaccharidic backbones 
would be recovered in aqueous NaCl, a t  a rate strongly dependent on the salt concentration. 

Introduction 
From the structural point of view, many microbial po- 

lysaccharides present a high degree of regularity, which 
seldom is encountered in polymeric carbohydrates from 
other sources. Such regularity of primary structure in- 
volves the possibility that the chains may assume ordered 
conformations, either single or multiple helices, both in 

* To whom correspondence should be addressed. 

the solid state and in solution, with important outcomes 
for mechanical properties, in the capability to form gels, 
and in rheological properties.'* In this context, succino- 
glycans, a family of structurally closely related (when not 
identical) exocellular polysaccharides produced by a num- 
ber of different soil bacteria, appear of particular rele- 
vance.'~~ 

In this paper we wish to present a rather detailed de- 
scription of the dilute solution behavior of a succinoglycan 
sample (purified SHELLFLO-S).g Data collected regard 
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