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1. Mathematics is the language of nature.
2. Everything around us can be represented

and understood through numbers.
3. If you graph these numbers, patterns emerge.

Therefore: There are patterns everywhere in nature.
-Max Cohen in Π

1 Introduction

Many simple systems in nature have correlation functions that decay with
time in an exponential way. For systems comprised of many interacting sub-
systems, physicists discoverd that such exponential decays typically do not
occur. Rather, correlation fucntions were found to decay with a power-law
form. The implications of this discovery is that in complex systems, there
is no single characteristic time. Since at large time scales a power-law is
larger than an exponential funciton, correlations described by power-laws
are termed “long-range” correlations [1].
The study of the statistical properties of heatbeat interval sequences has
been the interest of many researchers in recent years. The healthy heart-
beat is generally thought to be regulated accorgind to the classical principle
of homeostasis whereby physiologic systems operte to reduce variability and
achieve an equilibrium like-state. However, a group of researchers composed
by physicists from Boston University, Harvard Medical School and elsewhre
[2, 3, 4, 5], have found that under normal conditions, beat-to-beat fluctua-
tions in heart rate display the kind of long-range correlations typically ex-
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hibited by physical dynamical systems far from equilibrium [5].
The group has studied scale-invariant properties of the human heartbeat
time series. In thier studies, they sample beat-to-beat heart rate fluctuations
over very long time intervals for different cases. They study healthy subjects
awake and asleep, subjects with heart failure, and even subjects in the space
station MIR (Figure 1). The group has performed different studies in heart-
beat diagnosis over the last years. In this paper, I will review thier findings
on the multifractality in human heartbeat dynamics.

2 Fractality of the human heartbeat

In their initials study the human heart, records of up to 24 hour intervals
of heartbeats were obtained from several subjects and represented by time
series from the sequential intervals between beat n and beat n + 1, denoted
by B(n)(Figure 2).Then they introduce a mean fluctuation function F (n),
defined as

F (n) ≡ |B(n′ + n)−B(n′)|, (1)

where the bar denotes an average over all values of n. F (n) quantifies the
magnitude of the fluctuations over different time scales n. Figure ??c shows
a log-log plot of F (n) vs. n. The plot is linear over a broad physicologically
relevant time scale and shows that

F (n) ∼ nα (2)

and that the exponent α is very different for the healthy and diseased
patients. For the healthy patients, α is close to zero, and for the diseased
cases, α ∼0.5, corresponging to a random walk!

They further introduce a new stochastic variable, the timebeat intervals
I(n) ≡ B(n+ 1)−B(n). With it, they could perform power spectra analysis
(because I(n) is more stationary [6]), and this analysis yielded:

SI(f) ∼ 1

fβ
(3)

where β = 2α − 1, and can serve as an indicator: (i) β = 0, white noise,
(ii) 0 < β < 1, I(n) is correlated so that positive values of I are likely to be
close in time to each other, (iii) − 1 < β < 0, I(n) is negatively correlated.
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For the subjects with heart failure, they found β ∼ 0 in the low frequency
region confirming that the I(n) are not correlated for long time scales, as
opposed to the healthy subject, that had β ∼ −1, indicating non-trivial
long-range correlations in B(n), and a negative feed-back system that pre-
vents the heart to hit the extremes.
Later, using an alternative analysis, the detrended fluctuation analysis (DFA),
they proved that the fractal coefficient for sleeping subjects is lower than the
one for awake subjects, for both healthy and heart failure patients. The
fact that the heart failure patients are physically restrained because of their
disease, rules out changes on the behavior due to activity stimuli. This was
further confirmed by analysing the data of cosmonauts int he MIR space sta-
tion, that were subject to high stress activity and zero gravity, and obtaining
similar results as the healthy patients.
So, the sleep-wake scaling differences are dut to intrinsec changes in the car-
diac control mechanisms, and fluctuation cardiac dynamics exhibit scale-free
behavior for both.

3 Multifractality of the human heartbeat

In view of the heterogeneous nature of the heartbeat interval time series,
they further suggested that at single exponent is not enough to characterize
the complexity of the cardiac dynamics, and that a multifractal approach
is necessary(See figure 4). To test the hypothesis that an infinite number
of exponents is required to characterize healthy dynamics, a multrifractal
analysis of heartbeat interval time series has been performed and the fractal
dimension, D(h) has been calculated using wavelet methods.
The properties of the wavelet transform make wavelet methods attractive for
the analysis of complex nonstationary time series such as one encounters in
physiological signals.The group used n-order derivatives of the Gaussian func-
tion, allowing them to estimate the singular behavior and the corresponding
exponent h at a given oaction in the time series. The higher the order n of
the derivative, the higher the order of the polynomial trends removed and the
better the detection of the temporal structure of the local scaling exponents
in the signal. After obtaining the value h at each point of the time series,
they obtained the partition fuction Zq(a), the sum of the qth powers of the
local maxima of the modulus of the wavelet transform coefficients at scale a.
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For small scales,
Zq(a) ∼ aτ(q). (4)

The scaling exponents τ(q) can reveal different aspects of cardiac dynamics.
For example, for positive q, Zq(a) reflects the scaling of the large fluctuations,
for negative q, small fluctuations. The fractal dimensions D(h) are defined
through a Legendre function of τ(q)

D(h) = qh(q)− τ(q), h(q) ≡ dτ(q)

dq
. (5)

Monofractals display a linear τ(q) spectrum, τ(q) = qH − 1, where H
is the global Hurst exponent. For multifractal signals, tao is a nonlinear
function τ(q) = qh(q) − 1 where h is not a constant (Figure 5). Analysing
different subjects they found that for all subjects Zq(a) scales as a power law.
For all healthy subjects τ(q) is a nonlinear function indicating htat the heart
rate of healthy humans is a multifractal signal. Fig 5b shows that for healthy
subjects, D(h) has nonzero values forf a broad range of local Hurst exponents
h. Furthermore, the multifractality can not be explained by activity, because
the sleeping subjects display the same dynamics. In contrast, subjects with a
pathological condition show a loss of multifractality, D(h) is composed only
by a narrow range of exponents h. Moreover, even when the same exponent
h appears in both healthy and heart failure subjects, the fractal dimension
associated with it is smaller for the heart failure subjects.

4 Conclusions

The analysis performed by this group show a very important insight into the
dynamics of heartbeats. They conlcude that the different scaling behavior in
health and disease must relate to the underlying mechanism. Applications of
this analysis may lead to new diagnostics for patients at high risk of cardiac
disease and sudden death [6] with the advantage of a non-invasive method.
Like these, analysis using physical approaches to health issues can improve
medicine. This is very exciting for physicists that like to build models, for
they can actively contribute to exciting areas like this one without neces-
sarily having to get involved in applied physics for the development of new
technologies. .
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ences in the distributions of the amplitudes of the fluctua-
tions in the interbeat intervals—a surprising finding indicat-
ing higher probability for larger amplitudes during
sleep.13,24,45Next, we ask the question if there are character-
istic differences in the scaling behavior between sleep and
wake cardiac dynamics. We hypothesize that sleep and wake
changes in cardiac control may occur on all time scales and
thus could lead to systematic changes in the scaling proper-
ties of the heartbeat dynamics. Elucidating the nature of
these sleep–wake rhythms could lead to a better understand-
ing of the neuroautonomic mechanisms of cardiac regulation.

To answer this question we apply the detrended fluctua-
tion analysis~DFA! method. We analyze 30 datasets—each
with 24 h of interbeat intervals—from 18 healthy subjects
and 12 patients with congestive heart failure.46 We analyze
the nocturnal and diurnal fractions of the dataset of each
subject, which correspond to the 6 h~n'22 000 beats! from
midnight to 6:00 a.m. and noon to 6:00 p.m. These periods
incorporate the segments with lowest and highest heart rate
in the time series, which we and others found to be the best
indirect marker of sleep.43,44 We find that at scales above
'1 min(n.60) the data during wake hours display long-
range correlations over two decades with average exponents
aW'1.05 for the healthy group andaW'1.2 for the heart
failure patients. For the sleep data we find a systematic cross-
over at scalen'60 beats followed by a scaling regime ex-
tending over two decades characterized by a smaller expo-
nent: aS'0.85 for the healthy andaS'0.95 for the heart
failure group@Figs. 4~a! and 4~c!#. Although the values of the
sleep and wake exponents vary from subject to subject, we
find that for all individuals studied, the heartbeat dynamics
during sleep are characterized by a smaller exponent.47

This analysis suggests that the observed sleep–wake
scaling differences are due to intrinsic changes in the cardiac
control mechanisms for the following reasons:~i! The DFA
method removes the ‘‘trends’’ in the interbeat interval signal
which are due, at least in part, to activity, and quantifies the
fluctuations along the trends.~ii ! Responses to external
stimuli should give rise to a different type of fluctuations
having characteristic time scales, i.e., frequencies related to
the stimuli. However, fluctuations in both diurnal and noc-
turnal cardiac dynamics exhibit scale-free behavior.~iii ! The
weaker anticorrelated behavior observed for all wake phase
records cannot be simply explained as a superposition of
stronger anticorrelated sleep dynamics and random noise of
day activity. Such noise would dominate at large scales and
should lead to a crossover with an exponent of 1.5. However,
such crossover behavior is not observed in any of the wake
phase datasets~Fig. 4!. Rather, the wake dynamics are typi-
cally characterized by a stable scaling regime up ton55
3103 beats.

To test the robustness of our results, we analyze 17
datasets from six cosmonauts during long-term orbital flight
on the Mir space station under the extreme conditions of zero
gravity and high stress activity.48 Each dataset contains con-
tinuous periods of 6 h data under both sleep and wake con-
ditions. We find that for all cosmonauts the heartbeat interval
series exhibit long-range correlations with scaling exponents
consistent with those found for the healthy terrestrial group:

aW'1.04 for the wake phase andaS'0.82 for the sleep
phase. The values of these exponents indicate that the fluc-
tuations in the interbeat intervals are anticorrelated for the
wake phases and even stronger anticorrelated for the sleep
phase. This sleep-wake scaling difference is observed not
only for the group averaged exponents but for each indi-
vidual cosmonaut dataset@Fig. 4~b!#. Moreover, the scaling
differences are persistent in time, since records of the same
cosmonaut taken on different days~ranging from the 3rd to
the 158th day in orbit!, exhibit a higher degree of anticorre-
lation in sleep.

Thus, the larger values for the wake phase scaling expo-
nents observed for healthy subjects cannot be a trivial artifact
of activity. Furthermore, the larger value of the average wake
exponent for the heart failure group compared to the other
two groups cannot be attributed to external stimuli either,

FIG. 4. Plots of logF(n) vs logn for 6 h wake~open circles! and sleep
records~filled triangles! of ~a! one typical healthy subject;~b! one cosmo-
naut~during orbital flight!; and~c! one patient with congestive heart failure.
Note the systematic lower exponent for the sleep phase~filled triangles!,
indicating stronger anticorrelations.~d! As a control, we reshuffle and inte-
grate the interbeat increments from the wake~open squares! and sleep data
~solid squares! of the healthy subject presented in~a!. We find a Brownian
noise scaling over all time scales for both wake and sleep phases with an
exponenta51.5, as one expects for random walk-like fluctuations.
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Figure 1: Plots of log F (n) vs log n for 6 h wake (open circles) and sleep records (filled trinagles) of (a)
one typical healthy subject, (b) one cosmonaut (during orbital flight); and (c) one patient with congestive
heart failure. Note the systematic lower exponent for the sleep phase (filled triangles), indicating stronger
anticorrelations. (d) As a control, we reshuffle and integrate the interbeat increments from the wake (open
squares) of the healthy subject presented in (a). We find a Brownian noise scaling over all time scales for
both wake and sleep phases with an exponent α=1.5, as one expects for random walk-like fluctuations.
Reproduced from [2]
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I. INTRODUCTION

In recent years the study of the statistical properties of
heartbeat interval sequences has attracted the attention of re-
searchers from different fields.18–22Analysis has focused ex-
tensively on interbeat interval variability as an important
quantity to help elucidate possibly nonhomeostatic physi-
ologic variability because~i! the heart rate is under direct
neoroautonomic control,~ii ! interbeat interval variability is
readily measured by noninvasive means, and~iii ! analysis of
these heart rate dynamics may provide important practical
diagnostic and prognostic information. Figure 1 shows a car-
diac interbeat time series—the output of a spatially and tem-
porally integrated neuroautonomic control system. The time
series shows ‘‘erratic’’ fluctuations and ‘‘patchiness.’’ These
fluctuations are usually ignored in conventional studies
which focus on averaged quantities. In fact, these fluctua-
tions are often labeled as ‘‘noise’’ to distinguish them from
the true ‘‘signal’’ of interest. Generally, in the conventional
approach it is assumed that there is no meaningful structure
in apparent noise and, therefore, one does not expect to gain
any understanding about the underlying system through the
study of these fluctuations. However, by adapting and ex-
tending methods developed in modern statistical physics and
nonlinear dynamics, we find that the physiologic fluctuations
shown in Fig. 1 exhibit an unexpected hiddenscaling
structure.6,13,17,23–25Furthermore, the dynamical patterns of
these fluctuations and the associated scaling featureschange
with pathological perturbations. These findings raise the pos-
sibility that understanding the origin of such temporal struc-
tures and their alterations with disease~a! may elucidate cer-
tain basic aspects of heart rate control mechanisms, and~b!
may have potential for clinical monitoring.

II. 1Õf FLUCTUATIONS IN HEARTBEAT DYNAMICS

A quantity widely used to measure correlations in a time
series is the power spectrum, which measures the relative

frequency content of a signal. Fourier and related power
spectrum analysis have proved particularly useful for recog-
nizing the existence and role of characteristic frequencies
~time scales! in cardiac dynamics. The analysis of heartbeat
fluctuations focused initially on short time oscillations asso-
ciated with breathing and blood pressure as well as other
control.20,21 Studies of longer heartbeat records revealed
1/f -like scale-free behavior.4,5 A power spectrum calculation
assumes that the signal studied is stationary,26,27 and when
applied to nonstationary time series can lead to misleading
results. However, time series of beat-to-beat~RR! heart rate
intervals obtained from digitized electrocardiograms are
typically nonstationary and fluctuate in an irregular manner
in healthy subjects, even at rest@Fig. 1~b!#.28,29 Because of
this property, researchers were faced with the task to con-
sider only portions of the data and to test these portions for
stationarity before performing power spectrum analysis.

To illustrate the limitations of the power spectrum analy-
sis for nonstationary time series, we consider 6 h records
~n'104 beats! of interbeat intervals for a healthy subject
during sleep and wake activity. We show that there isno true
1/f power spectrum for the interbeat intervals in the real
heart. Instead, we find that the power spectrum of the inter-

FIG. 2. ~Top! Power spectrum from 6 h records of interbeat intervals for a
healthy subject during day and night.~Bottom! We plot the local exponentb
calculated from the power spectrum for six healthy subjects. The local value
of b shows a persistent drift, sono true scaling exists. This is not surprising,
having in mind the nonstationarity of the signals. The horizontal line shows
the value of the exponent obtained from a least square fit to the data.

FIG. 1. Consecutive heartbeat intervals are plotted versus beat number for 6
h recorded from the same healthy subject during:~a! wake period: 12:00
p.m. to 6:00 p.m. and~b! sleep period: 12:00 a.m. to 6:00 a.m.~Note that
there are fewer interbeat intervals during sleep due to the larger average of
the interbeat intervals, i.e., slower heart rate.!
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Figure 2: Consecutive heartbeat intervals are plotted versus beat number for 6h recordedd from the
same healthy subject during: (a) wake period and (b) sleep period. (Note that there are fewer interbeat
intervals during sleep due to the larger average of the interbeat intervals, i.e., slower heart rate. Reproduced
from [2]
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Fig. 1. The interbeat interval BL(n) after low-pass �ltering for (a) a healthy subject and (b) a patient with
severe cardiac disease (dilated cardiomyopathy). The healthy heartbeat time series shows more complex

uctuations compared to the diseased heart rate 
uctuation pattern that is close to random walk (“brown”)
noise. (c) Log–log plot of F(n) vs. n. The circles represent F(n) calculated from data in (a) and the triangles
from data in (b). The two best-�t lines have slope � = 0:07 and � = 0:49 (�t from 200 to 4000 beats).
The two lines with slopes � = 0 and � = 0:5 correspond to “1=f noise” and “brown noise”, respectively.
We observe that F(n) saturates for large n (of the order of 5000 beats), because the heartbeat interval are
subjected to physiological constraints that cannot be arbitrarily large or small. After Peng et al. [8–10].

For the diseased data set, we observe a 
at spectrum (� ≈ 0) in the low-frequency
region con�rming that I(n) are not correlated over long time scales (low frequencies).
In contrast, for the data set from the healthy subject we obtain � ≈ −1, indicating
nontrivial long-range correlations in B(n) – these correlations are not the consequence

Figure 3: The interbeat interval BL(n) after low pass filtering for (a) healthy subject and (b) a patient
with severe cardiac disease. The healthy heartbeat time series shows more complex fluctutations compared
with the diseased heart rate fluctuation pattern that is close to a random walk. (c) Log-log plot of F (n)
vs n.
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since patients with severe cardiac disease are strongly re-
stricted in their physical activity. We note, however, that the
average sleep–wake scaling difference remains the same
~'0.2! for all three groups. Such sleep–wake changes in the
scaling characteristics may indicate different regimes of in-
trinsic neuroautonomic regulation of the cardiac dynamics,
which may ‘‘switch’’ on and off in accordance with circadian
rhythms. A very recent study confirms our finding of lower
value for the scaling exponent during sleep and shows that
different stages of sleep~e.g., light sleep, deep sleep, rapid
eye movement stages! could be associated with different cor-
relations in the heartbeat fluctuations.49 The findings of
strongeranticorrelations,47 as well as higher probability for
larger heartbeat fluctuations during sleep,13,24,45are of inter-
est from a physiological viewpoint, since they suggest that
the observed dynamical characteristics in the heartbeat fluc-
tuations during sleep and wake phases are related to intrinsic
mechanisms of neuroautonomic control, and support a reas-
sessment of the sleep as a surprisinglyactive dynamical
state. The finding of scaling features in the human heartbeat
and their change with disease or sleep–wake transition have
motivated new modeling approaches which may lead to bet-
ter understanding the underlying control mechanisms of
heartrate regulation.33

Before concluding this section we note that recent
work34 provides evidence of surprising complexity present in
the temporal organization of the heterogeneities~e.g., trends!
in human heartbeat dynamics. Trends in the interbeat interval
signal are traditionally associated with external stimuli. To
probe the temporal organization of such heterogeneities we
introduce a segmentation algorithm35 and find that the
lengths of segments with different local mean heart rates
follow a power-law distribution. This scale-invariant struc-
ture is not a simple consequence of the long-range correla-
tions present in the heartbeat fluctuations discussed in this
section. These new findings suggest that relevant physiologi-
cal information may be hidden in the heterogeneities of the
heartbeat time series, the understanding of which remains an
open question.

IV. SELF-SIMILAR CASCADES IN THE HEARTBEAT
FLUCTUATIONS

Many simple systems in nature have correlation func-
tions that decay with time in an exponential way. For sys-
tems comprised of many interacting subsystems, physicists
discovered that such exponential decays typically do not oc-
cur. Rather, correlation functions were found to decay with a
power-law form. The implication of this discovery is that in
complex systems, there is no single characteristic time.50–52

If correlations decay with a power-law form, we say the
system is ‘‘scale-free’’ because there is no characteristic scale
associated with a power law. Since at large time scales a
power law is always larger than an exponential function,
correlations described by power laws are termed ‘‘long-
range’’ correlations—they are of longer range than exponen-
tially decaying correlations.

The findings of long-range power-law correlations23,47

and the recently reported scaling in the distributions of heart-
beat fluctuations13,45~i.e., ‘‘data collapse’’ of the distributions

for different time scales! suggest the absence of a character-
istic scale and indicate that the underlying dynamical mecha-
nisms regulating the healthy heartbeat have statistical prop-
erties which aresimilar on different time scales. Such
statistical self-similarity is an important characteristic of
fractal objects.53 However, how can this purported fractal
structure be ‘‘visualized’’ in the seemingly erratic and noisy
heartbeat fluctuations? The wavelet decomposition of beat-
to-beat heart rate signals can be used to provide a visual
representation of this fractal structure~Fig. 5!. The brighter
colors indicate larger values of the wavelet amplitudes~cor-
responding to large heartbeat fluctuations! and white tracks
represent the wavelet transform maxima lines. The structure
of these maxima lines shows the evolution of the heartbeat
fluctuations with scale and time. The wavelet analysis per-
formed with the second derivative of the Gaussian~the
Mexican hat! as an analyzing wavelet uncovers a hierarchical
scale invariance@Fig. 5 ~top panel!#, which is characterized
by the stability of the scaling form observed for the distribu-
tions and the power-law correlations.13,23,47The plots reveal
a self-affine cascade formed by the maxima lines—a magni-
fication of the central portion of the top panel shows similar
branching patterns@Fig. 5 ~lower panel!#. Such fractal cas-

FIG. 5. ~Color online! Color-coded wavelet analysis of a heartbeat interval
signal. Thex-axis represents time~'1700 beats! and they-axis indicates the
scale of the wavelet used~a51,2,...,80; i.e.,' from 5 to 5 min! with large
scales at the top. This wavelet decomposition reveals a self-similar fractal
structure in the healthy cardiac dynamics—a magnification of the central
portion of the top panel with 200 beats on thex-axis and wavelet scalea
51,2,...,20 on they-axis shows similar branching patterns~lower panel!.
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Figure 4: Color-coded wavelet analysis of a heartbeat interval aisgnal. The x-axis represents time
( 1700 beats) and the y-axis indicates the scale of the wavelet used (a=1,2,...80; i.e., from 5 to 5 min) with
large scales at the top. This wavelet decomposition reveals a self-similar fractal structure in the healthy
cardiac dynamics - a magnification of the central portion of the top panel with 200 beats on the x-axis
and wavelet scale a=1,2,...,20 on the y-axis shows similar branching patterns (lower panel). Reproduced
from [2].
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straight line fort(q), while for a multifractal signalt(q) is
nonlinear. Note the clear differences between thet(q) curves
for healthy and heart failure records@Fig. 8~c!#. The con-
stantly changing curvature of thet(q) curves for the healthy
records suggests multifractality. In contrast,t(q) is almost

linear for the congestive heart failure subject, indicating
monofractality.

We analyze both daytime~12:00 to 18:00! and nighttime
~0:00 to 6:00! heartbeat time series records of healthy sub-
jects, and the daytime records of patients with congestive
heart failure. These data were obtained by Holter monitoring.
Our database includes 18 healthy subjects~13 female and 5
male, with ages between 20 and 50, average 34.3 years!, and
12 congestive heart failure subjects~3 female and 9 male,
with ages between 22 and 71, average 60.8 years! in sinus
rhythm.46

FIG. 9. ~Color online! ~a! Multifractal spectrumt(q) of the group averages
for daytime and nighttime records for 18 healthy subjects and for 12 patients
with congestive heart failure. The results show multifractal behavior for the
healthy group and distinct change in this behavior for the heart failure
group.~b! Fractal dimensionsD(h) obtained through a Legendre transform
from the group averagedt(q) spectra of~a!. The shape ofD(h) for the
individual records and for the group average is broad (Dh'0.25), indicat-
ing multifractal behavior. On the other hand,D(h) for the heart failure
group is very narrow (Dh'0.05), indicating loss of multifractality. The
different form ofD(h) for the heart failure group may reflect perturbation of
the cardiac neuroautonomic control mechanisms associated with this pathol-
ogy. Note that, forq52, the heartbeat fluctuations of healthy subjects are
characterized byh'0.1, which corresponds toa'1.1 for the interbeat in-
terval series obtained from DFA analysis~Sec. III!.

FIG. 8. ~Color online! Scaling of the partition functionZq(a) with scalea
obtained from daytime records consisting of'25 000 beats for~a! a healthy
subject and~b! a subject with congestive heart failure.~c! Multifractal spec-
trum t(q) for the individual records in~a! and ~b!.
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Figure 5: (a)Multifractal spectrum τ(q) of the group averages for daytime and nighttime recors for
18 healthy subjects and for 12 patients with congestive heart failure. The results show multrifractal
behavior for the healthy group and the disctinct change in this behavior for the heart failure group. (b)
Fractal dimensions D(h) obtained through Legendre transform from the group averaged τ(q) spectra of
(a). The shape D(h) for the individual records and for the group average is board (δh ∼ 0.25), indicating
multifractal behavior. On the other hand, D(h) for the heart failure group is very narrow (δh ∼ 0.05),
indicating loss of multifractality.
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