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1. Mathematics is the language of nature.

2. Everything around us can be represented

and understood through numbers.

3. If you graph these numbers, patterns emerge.
Therefore: There are patterns everywhere in nature.
-Max Cohen in 11

1 Introduction

Many simple systems in nature have correlation functions that decay with
time in an exponential way. For systems comprised of many interacting sub-
systems, physicists discoverd that such exponential decays typically do not
occur. Rather, correlation fucntions were found to decay with a power-law
form. The implications of this discovery is that in complex systems, there
is no single characteristic time. Since at large time scales a power-law is
larger than an exponential funciton, correlations described by power-laws
are termed “long-range” correlations [1].

The study of the statistical properties of heatbeat interval sequences has
been the interest of many researchers in recent years. The healthy heart-
beat is generally thought to be regulated accorgind to the classical principle
of homeostasis whereby physiologic systems operte to reduce variability and
achieve an equilibrium like-state. However, a group of researchers composed
by physicists from Boston University, Harvard Medical School and elsewhre
2, 3, 4, 5], have found that under normal conditions, beat-to-beat fluctua-
tions in heart rate display the kind of long-range correlations typically ex-



hibited by physical dynamical systems far from equilibrium [5].

The group has studied scale-invariant properties of the human heartbeat
time series. In thier studies, they sample beat-to-beat heart rate fluctuations
over very long time intervals for different cases. They study healthy subjects
awake and asleep, subjects with heart failure, and even subjects in the space
station MIR (Figure 1). The group has performed different studies in heart-
beat diagnosis over the last years. In this paper, I will review thier findings
on the multifractality in human heartbeat dynamics.

2 Fractality of the human heartbeat

In their initials study the human heart, records of up to 24 hour intervals
of heartbeats were obtained from several subjects and represented by time
series from the sequential intervals between beat n and beat n + 1, denoted

by B(n)(Figure 2).Then they introduce a mean fluctuation function F'(n),
defined as

F(n) = |B(n' +n) — B(n')], (1)

where the bar denotes an average over all values of n. F'(n) quantifies the
magnitude of the fluctuations over different time scales n. Figure ??c shows
a log-log plot of F'(n) vs. n. The plot is linear over a broad physicologically
relevant time scale and shows that

F(n) ~n® (2)

and that the exponent « is very different for the healthy and diseased
patients. For the healthy patients, « is close to zero, and for the diseased
cases, o ~0.5, corresponging to a random walk!

They further introduce a new stochastic variable, the timebeat intervals
I(n) = B(n+1) — B(n). With it, they could perform power spectra analysis
(because I(n) is more stationary [6]), and this analysis yielded:

1
N
where § = 2a — 1, and can serve as an indicator: (i) § = 0, white noise,

(17) 0 < B < 1, I(n) is correlated so that positive values of I are likely to be
close in time to each other, (i7i) —1 < 3 < 0, I(n) is negatively correlated.

Si(f) (3)



For the subjects with heart failure, they found § ~ 0 in the low frequency
region confirming that the I(n) are not correlated for long time scales, as
opposed to the healthy subject, that had g ~ —1, indicating non-trivial
long-range correlations in B(n), and a negative feed-back system that pre-
vents the heart to hit the extremes.

Later, using an alternative analysis, the detrended fluctuation analysis (DFA),
they proved that the fractal coefficient for sleeping subjects is lower than the
one for awake subjects, for both healthy and heart failure patients. The
fact that the heart failure patients are physically restrained because of their
disease, rules out changes on the behavior due to activity stimuli. This was
further confirmed by analysing the data of cosmonauts int he MIR space sta-
tion, that were subject to high stress activity and zero gravity, and obtaining
similar results as the healthy patients.

So, the sleep-wake scaling differences are dut to intrinsec changes in the car-
diac control mechanisms, and fluctuation cardiac dynamics exhibit scale-free
behavior for both.

3 Multifractality of the human heartbeat

In view of the heterogeneous nature of the heartbeat interval time series,
they further suggested that at single exponent is not enough to characterize
the complexity of the cardiac dynamics, and that a multifractal approach
is necessary(See figure 4). To test the hypothesis that an infinite number
of exponents is required to characterize healthy dynamics, a multrifractal
analysis of heartbeat interval time series has been performed and the fractal
dimension, D(h) has been calculated using wavelet methods.

The properties of the wavelet transform make wavelet methods attractive for
the analysis of complex nonstationary time series such as one encounters in
physiological signals. The group used n-order derivatives of the Gaussian func-
tion, allowing them to estimate the singular behavior and the corresponding
exponent h at a given oaction in the time series. The higher the order n of
the derivative, the higher the order of the polynomial trends removed and the
better the detection of the temporal structure of the local scaling exponents
in the signal. After obtaining the value h at each point of the time series,
they obtained the partition fuction Z,(a), the sum of the gth powers of the
local maxima of the modulus of the wavelet transform coefficients at scale a.



For small scales,
Zy(a) ~ a™®. (4)

The scaling exponents 7(q) can reveal different aspects of cardiac dynamics.
For example, for positive g, Z,(a) reflects the scaling of the large fluctuations,
for negative ¢, small fluctuations. The fractal dimensions D(h) are defined
through a Legendre function of 7(q)

- 5)

Monofractals display a linear 7(q) spectrum, 7(q¢) = ¢H — 1, where H
is the global Hurst exponent. For multifractal signals, tao is a nonlinear
function 7(¢) = ¢h(q) — 1 where h is not a constant (Figure 5). Analysing
different subjects they found that for all subjects Z,(a) scales as a power law.
For all healthy subjects 7(g) is a nonlinear function indicating htat the heart
rate of healthy humans is a multifractal signal. Fig 5b shows that for healthy
subjects, D(h) has nonzero values forf a broad range of local Hurst exponents
h. Furthermore, the multifractality can not be explained by activity, because
the sleeping subjects display the same dynamics. In contrast, subjects with a
pathological condition show a loss of multifractality, D(h) is composed only
by a narrow range of exponents h. Moreover, even when the same exponent
h appears in both healthy and heart failure subjects, the fractal dimension
associated with it is smaller for the heart failure subjects.

4 Conclusions

The analysis performed by this group show a very important insight into the
dynamics of heartbeats. They conlcude that the different scaling behavior in
health and disease must relate to the underlying mechanism. Applications of
this analysis may lead to new diagnostics for patients at high risk of cardiac
disease and sudden death [6] with the advantage of a non-invasive method.
Like these, analysis using physical approaches to health issues can improve
medicine. This is very exciting for physicists that like to build models, for
they can actively contribute to exciting areas like this one without neces-
sarily having to get involved in applied physics for the development of new
technologies. .
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Figure 1: Plots of log F(n) vs log n for 6 h wake (open circles) and sleep records (filled trinagles) of (a)
one typical healthy subject, (b) one cosmonaut (during orbital flight); and (c) one patient with congestive
heart failure. Note the systematic lower exponent for the sleep phase (filled triangles), indicating stronger
anticorrelations. (d) As a control, we reshuffle and integrate the interbeat increments from the wake (open
squares) of the healthy subject presented in (a). We find a Brownian noise scaling over all time scales for
both wake and sleep phases with an exponent a=1.5, as one expects for random walk-like fluctuations.
Reproduced from [2]
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Figure 2: Consecutive heartbeat intervals are plotted versus beat number for 6h recordedd from the
same healthy subject during: (a) wake period and (b) sleep period. (Note that there are fewer interbeat
intervals during sleep due to the larger average of the interbeat intervals, i.e., slower heart rate. Reproduced
from [2]
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Figure 3: The interbeat interval By, (n) after low pass filtering for (a) healthy subject and (b) a patient
with severe cardiac disease. The healthy heartbeat time series shows more complex fluctutations compared
with the diseased heart rate fluctuation pattern that is close to a random walk. (¢) Log-log plot of F(n)

Vs n.
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Figure 4: Color-coded wavelet analysis of a heartbeat interval aisgnal. The x-axis represents time
(/1700 beats) and the y-axis indicates the scale of the wavelet used (a=1,2,...80; i.e., from 5 to 5 min) with
large scales at the top. This wavelet decomposition reveals a self-similar fractal structure in the healthy
cardiac dynamics - a magnification of the central portion of the top panel with 200 beats on the x-axis
and wavelet scale a=1,2,...,20 on the y-axis shows similar branching patterns (lower panel). Reproduced
from [2].
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Figure 5: (a)Multifractal spectrum 7(gq) of the group averages for daytime and nighttime recors for
18 healthy subjects and for 12 patients with congestive heart failure. The results show multrifractal
behavior for the healthy group and the disctinct change in this behavior for the heart failure group. (b)
Fractal dimensions D(h) obtained through Legendre transform from the group averaged 7(q) spectra of
(a). The shape D(h) for the individual records and for the group average is board (§h ~ 0.25), indicating
multifractal behavior. On the other hand, D(h) for the heart failure group is very narrow (6h ~ 0.05),
indicating loss of multifractality.
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