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Abstract.

The use of Hidden Markov Models (HMM) in protein modeling is described.
Sequence alignment based on profile HMMs can help identifying protein family
members and present some advantages. This possibility is discussed.

Introduction.

The functional and structural characterization of new proteins can be done by
taking advantage of their evolutionary relation with proteins of known structure or
function. Statistically significant identification of homologous proteinsis crucial for this.

One way to look for homologous sequences is the use of statistical profiles of
protein families. A profile is a model that shows the amino acid distribution for each
position in the family. A systematic method for constructing profile models is provided
by Hidden Markov Models.

Profile Hidden Markov M odds

Use of HMMs for representing profiles of multiple sequence alignments was first
used by Krogh et a [3]. They introduced an HMM architecture consisting of three sets of
states. “Match” states describe the conserved structure in a protein family. Additionally,
“insert” and “delete” states allow for insertion or deletion of one or more residues
respectively.  All transitions probabilities between states as well as all character
emissions in the insert and match states are fixed based on the information of a protein
family. Under these circumstances, emission of amino acids as the position moves from
the start to the end node in the model generates protein sequences. The probability of any
sequence is computed by multiplying the emission and transition probabilities along the
path. A diagram of asmall profile HMM isincluded in appendix 1.

The different probabilities of the model can be set in two ways. An HMM can be
trained from initialy unaligned sequences of an identified family. The number of
sequences considered is important for the significance of the model, for example, in the
case of the globin family 200 sequences is enough [3]. Alternatively, an HMM can be
built from prealigned sequences. The last oneisthe relatively easiest way. Once an HMM
is available, regardless of its complexity, the same standard dynamic programming
algorithms can be used for aligning and scoring sequences with the model, making it
possible to discriminate between family and non-family members.



In genera, the layout of a model depends on the specific application. For
example, for prediction of transmembrane protein topology (see appendix 2) [4] the
layout includes submodels designed to model specific region of a membrane protein,
such as the transmembrane helix core. These submodels contain several HMM states in
order to model the lengths of the various regions. Transitions between submodels make
sure that the constraints associated to helical transmembrane proteins are hold. This
model predicts 97-98% of transmembrane helices.

Advantages of Profile HMMs

Profile HMMs differ from the more conventional techniques based on pairwise
aignments. The alignments generated by these methods are strongly dependent of the
particular values of parameters required by the model, in particular the gap pendlties. In a
profile HMM, the gap costs are not arbitrary numbers. This is because the transition
probabilities involving insertion and matching are correlated. In fact, the sum of the
probabilities of all of the possible transitions from one state must be equal to one.

Additionally, profile HMMs implicitly includes a cost for inserted residues
whereas in traditional alignment inserted residues have no cost besides the affine gap
penalty. Not including a cost for insertions would mean that unconserved insertions in
protein structures have the same residue distribution as proteins in general which is not
necessarily the case. In fact, insertions tend to be seen most often in surface loops of
protein structures, and so have a bias towards hydrophilic residues [1]. Profile HMMs can
capture this information in the insert state emission distribution, making alignments more
realistic.

Discussion.

In order to get a profile HMM it is necessary to run a multiple alignment in the
first place. To do that it is necessary to use alternative techniques for alignment. So, in
principle, the same biases of the other techniques could be introduced in profile HMMs.
However, this problem can be reduced by increasing the number of sequences
considered. This reduces the applicability of profile HMM to protein families with a
larger number of members.

A profile HMM makes it possible to consider explicitly some important biological
facts such as bias toward specific kinds of amino acids or length of transmembrane
domains. If the training process is adequate this facts will be reflected in the values of the
emission and transition probabilities

The identification of homologous proteins is important not only for structural
studies but also for phylogenetic studies. Provided the profile HMM of afamily is known
the identification of evolutionary distant related proteins is more realistic. This makes the
method ideal for the construction of phylogenetic trees.
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Appendix 1. A small profile HMM with three consensus columns.
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The three columns are modeled by three match states (m1, m2, m3) each of which
has 20 residue emission probabilities. Additionally, there are four insert states (i0, i1, i2,
i3) each of them also have 20 emission probabilities. Finally, there are three del ete states
(d1, d2, d3) without emission probabilities. The begin and end states define the extremes
of the sequence. The arrows indicate the possible transitions between states. Each of the
transitions has a specific probability.

Appendix 2. Layout of aHMM for transmembrane protein topology prediction (ref 4)
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