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RNA (ribonucleic acid) is a critical molecule in many biologically interesting systems. RNA is
implicated in viral infections such as AIDS and the common cold as well as protein production
and numerous other biological functions. The collection of base pairs which occur in the
three dimensional structure of RNA, also known as the secondary structure, is of crucial
importance for the functionality of the RNA. For example, both ribosomal (rRNA) and
transfer RNA (tRNA) derive their function from this secondary structure and flaws in the
structure are believed to render the RNA inactive. Other types of RNA, such as messenger
RNA (mRNA), which codes amino acids to form the basis of proteins, rely more on their base-
pair sequence to provide function and information. However, there is still a dependence on
secondary structure to control the rate of coding the proteins by the mRNA. It is therefore
of great interest to study and understand the secondary structure of RNA as a step to
understanding RNA functionality. It is possible to determine RNA secondary structure from
X-ray crystallography and nuclear magnetic resonance techniques, but such experiments
are often complex, difficult and time consuming to perform, so alternative methods are
sought. This paper focuses on the computational methods and algorithms used by molecular
biologists to elucidate RNA secondary structure. In particular, we review genetic algorithms
(GAs) and follow recent work by Chen et al, [1] supplemented with other sources as required.
As an astronomy graduate student frequently using numerical models, I felt this would be
a topic in molecular biology to which it might be possible for physicists to bring some new
insights.

There are two main approaches to the prediction of RNA secondary structure: Comparative
sequence analysis involves computing common foldings for a family of aligned, homologous
RNAs. Underlying this method is the assumption that structure is conserved more than
sequence. The difficulty with this method as a predictive tool is that prior knowledge of the
alignment of the RNA sequences is required, implying some prior knowledge of primary and
secondary RNA structure. Algorithms to perform this alignment without a priori knowledge
of the RNA structure exist, but are currently limited to small sequences of RNA. The second
approach is a thermodynamic one. Energies are assigned to features of RNA secondary
structure such as loops and mismatched pair stacking and then RNA secondary structures
which minimize, or almost minimise, free energy are sought. This method relies on the quality
of the thermodynamic input data, although this is continuously being refined, and suffers
from the fact that there are a number of almost degenerate free energy minima from which
an optimal solution must be chosen. The thermodynamic optimization method tends to
break down when pseudoknots are encountered, since it is not known how to assign energies
to these structures, and it is often assumed that pseudoknots are a part of RNA tertiary
structure to avoid this issue. Although the results from energy optimization are sub-optimal



without a prior: knowledge of the RNA structure, thermodynamic optimization techniques
can be persuaded to deliver reasonable results, especially when the domain of possible RNA
structures is poorly defined.

GAs are a stochastic optimization technique used in studying a variety of biological and
non-biological systems, which can be applied to the problem of secondary RNA structure
prediction. They were originally characterized by Holland [2] in 1974 and have subsequently
gained popularity in many applications. An attractive feature of GAs is that their behaviour
mimics natural genetic evolution, including concepts like mutation, reproduction and sur-
vival of the fittest. GAs perform operations on a population of possible solutions, each
encoded with a representation of the genetic material of an individual in nature (e.g. a chro-
mosome). The GA randomly changes some solutions, called GA mutation, and combines
features of optimal parental solutions, called GA crossover, in order to find a new generation
of solutions which comes closer to satisfying some fitness criteria (typically minimizing the
free energy of the RNA structure). The GA then continues to iterate until it can no longer
improve the solution. Unfortunately, free energy minimization alone does not lead to optimal
RNA structures and some form of comparative sequencing is used to supplement the GA
results in order to select the optimal structure, thus limiting the usefulness of GAs in RNA
secondary structure prediction. Chen et al have developed an approach which can predict
the secondary structure of the RNA, without knowing or finding the alignment of sequences,
hence producing a GA which finds optimal structures with much greater frequency.

The basic approach is to use not only the free energy, but also the structural similarity and
stability among sequences as fitness criteria. It is this structural similarity which underpins
phylogenetic comparisons, hence adding extra predictive power to the GA. Initially, a GA is
applied to a population of randomly generated structures with the free energy as the only
fitness criterion. The GA iterates crossover, mutation and selection until all the structures in
the population reach some predefined level of stability. In the second stage, each structure is
assigned a measure which reflects the degree to which structural features have been conserved
among sequences. The GA is applied again, but now the degree of structure conservation
across generations is used as the fitness criteria to produce possible common structures for
the sequences. The selected structures are now ranked on a scale closely related to the
structure conservation measure and these are examined to find a convincing structure.

Chen et al applied their GA to 20 tRNA sequences, 25 5S rRNAs, seven rev response elements
(RREs) in HIV-2 and 10 RREs in SIV. The RNA structures from the GA were compared
to known structures for the 20 tRNA, which contained 432 base pairs. The most favourable
structure from the GA correctly predicted 87.7% of known base pairs and one of the 10
ranked ordered structures contained 98.8% of known base pairs. For the 25 5S rRNAs, the
most favourable model predicted 95.3% of the 910 known base pairs on average, and one
of the top ten structures contained 98.6% of known base pairs on average. These results
seem to indicate that the GA performs well in predicting secondary structure and it may be
especially useful in cases where there is little knowledge of the domain of possible solutions.
Conversely, an accuracy of 87.7% is very poor in applications which require exact knowledge
of RNA secondary structure and, in this context, GAs can currently only be viewed as a
first order approximation to RNA secondary structure. A major issue of concern for this
approach is the amount of computational time and power required to find optimal structures.
The number of secondary structures grows exponentially with sequence length and whilst
structural similarity and stability criteria can be used to limit the number of structures,
the same criteria may not be applicable to all sequences. For example, S.acidoc 5S rRNA
produced 64 possible structures whilst B.brevis 5S rRNA produced 2386 structures starting



from the same initial criteria. Clearly, the optimal values for the fitness criteria are different
in both cases and it is difficult to determine in advance what values to use. This leads to the
adoption of fairly loose criteria to account for the wide variation in number of structures,
which results in a large number of possible structures being collected in the first stage of
the algorithm. This causes a heavy computational burden in the final stage of the algorithm
when the fitness criteria is the degree of structural conservation. In order to reduce this
computational burden, Chen et al suggest the use of a fairly restricted GA which will be
satisfied by most of the sequences, then using looser criteria for the remaining sequences.
Whilst this seems like a reasonable approach, it is not clear that this would be practical for
a large number of sequences. Overall this GA requires O(n?m?N?) computation time, where
m is the maximum number of structures among /N sequences. For typical runs in the paper,
this amounted to a few hours of cpu time (<40 hours).

Dynamic programming algorithms (DPAs) are a more popular and widely used alternative
to GAs. A DPA is essenitally a method for aligning the RNA sequences by recursion,
but with caching of intermediate results, typically reducing the computational complexity
of the problem from O(2") to O(n?). Sub-optimal folding algorithms based on dynamic
programming will therefore take considerably less time to run than a GA. Proponents of
DPAs deride GAs as 'black box’ methods which lack theoretical underpinning [6] . DPAs
work at the resolution of the individual base pairs, whereas the basic unit of GAs is the
stem. The stem is simply a chain of base pairs whose size is based on several considerations,
available computing power being one. The resolution of the GA is therefore limited by the
minimum stem size in the model and, since secondary structure is possible at the level of
the single base pair, a DPA should always predict structure at least as accurately as a GA.
The weakness of the DPA is that, like the previous available GAs, it works only to minimise
free energy and so requires auxilliary information to determine the optimal structure from
the set of optimal solutions it produces. The great strength of the new approach illustrated
by Chen et al, is that this structural information is already included in the evolution of the
algorithm.

By way of conclusion, and to examine one possible future direction for the use of GAs in
RNA secondary structure prediction, we look at the problem of pseudoknots. As mentioned
previously, basic GAs cannot cope with pseudoknots in the RNA structure, although it has
recently been shown that DPAs can deal with this complication [3] (again with the caveat that
they require auxilliary structural information to determine the optimal structure). However,
the massively parallel GA of Shapiro and Navetta [4, 5] is able to cope with pseudoknots in
a reasonable amount of computing time. The GA was run on a parallel processor MasPar
MP-2 machine (16,384 processors) and predicted about 85% of the base pairs predicted by
a DPA. With current improvements in the availability and performance of multi-processor
machines, it would seem worthwhile to attempt to combine the parallel algorithm with the
structural similarity and stability fitness criteria of Chen et al to further improve secondary
structure prediction from GAs.
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