
Emergent States of Matter

HOMEWORK SHEET 7

Due 12 noon Wed 5 May 2021 or earlier

Please attempt these questions without looking at textbooks, if you can. You will learn more by thinking about
these problems yourself.

Question 7–1.
This question concerns the behaviour of correlations in a system with a continuous symmetry at its

lower critical dimension. This is the dimension above which ordering is possible for non-zero T . We saw
earlier that for Bose-Einstein condensation, described by a complex order parameter, dc = 2. Note that a
similar more technically complicated analysis applies to smectic liquid crystals, where dc = 3.
(a) Consider a system with a complex order parameter ψ = S1 + iS2 described by the Hamiltonian

−H =

∫
d2r

[
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|∇ψ|2 +
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)2
]

Notice that this is just a particular way to write our usual Landau theory up to quartic order, for a
complex order parameter. At low temperatures, the amplitude degrees of freedom are frozen out, but
the phase fluctuations are strong as we have seen previously. Writing ψ = A exp(iθ(r)), where A is the
temperature dependent amplitude, which you should determine, show that the effective Hamiltonian is

−H =
K

2

∫
d2r(∇θ)2

and determine the spin wave stiffness K. The Hamiltonian we have found is that of a 2D XY spin
system with effective exchange interaction J = K(kBT ).

(b) Using the fact that the Hamiltonian is Gaussian, show that the normalized order parameter correlation
function G(r) ≡ 〈ψ∗(r)ψ(0)〉 /A2 obeys

G(r) = exp

[
−1

2

2kBT

J

∫ Λ
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k2

]

where Λ is the coarse-graining scale.
(c) For large r � Λ−1, the oscillatory exponential term can be neglected. By change of variable, and making

sure to consider what happens to the limits of integration when doing so, show that the integral can be

approximated by its logarithmic divergence, leading to G(r) =
(

r
Λ−1

)−η
, where η = kBT/2πJ

This important result shows that at the lower critical dimension, correlations exhibit power law decay, with
a temperature dependent, continuously varying exponent. At higher temperatures, our phase approximation
must break down, and at higher temperatures still, we expect the system to exhibit the usual exponential
decay of correlations. Hence we conclude that at some intermediate temperature, there is a phase transition
between a state with exponential correlations and a state with power law correlations. This is the celebrated
Kosterlitz-Thouless transition.

Question 7–2.
(a) Starting from the Hamiltonian for a 2D superfluid

H =
ρs
2

∫
v2
s d

2r

calculate the energy of a quantum vortex in a circular 2D condensate of radius R, in terms of the system
radius R and core size a and C, the energy/unit area of the region of the core.
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(b) Consider two quantum vortices in the 2D condensate, separated by a distance r, with topological charges
q = ±1. Calculate the energy of a pair of vortices, one with sign +1, the other with sign -1, and show
that

E(r) = 2πρs(h̄/m)2 ln(Cr/a)

Note that this energy is finite, so vortex pairs can be thermally excited for T > 0.
(c) OPTIONAL - no credit If the vortices are initially placed in an x − y coordinate system with the

+1 vortex at y = r/2 and the -1 vortex at y = −r/2, what is the resulting magnitude and direction of
the velocity of the pair?

(d) Suppose now that there is only a single vortex in the system. Estimate the number of ways that the
vortex can be placed in the system, and hence calculate the free energy of the single vortex. You should
find that

F/kBT = (πK − 2) lnR+ · · ·

where K ≡ (h̄/m)2ρs/kBT . Hence show that as long as we can neglect the interaction between vortices,
it is thermodynamically favorable for vortices to proliferate above at critical temperature given implicitly
by K∗ = 2/π. This is the Kosterlitz-Thouless transition temperature, TKT and the result obtained here
by elementary methods is correct when treated by renormalization group methods. Comment on whether
or not you think that this transition has emerged through the mechanisms of spontaneous symmetry
breaking that we have focused on in other systems during the course.

Note also that your result implies that going below TKT , the superfluid density jumps from zero to a value
that depends only on TKT and fundamental constants, a prediction that was experimentally verified and
cited in the Nobel Prize description for Kosterlitz and Thouless.
(e) Using this answer and your results for 7–1, show that correlations decay algebraically at the transition

temperature with a 1/4 power law.

Question 7–3.
This question concerns spontaneous symmetry breaking in charged superfluids, i.e. superconductors,

and is based on the coarse-grained free energy

F{ψ,
→
A} =

∫
ddx

α|ψ|2 +
β

2
|ψ|4 + |(∇− ie∗

→
A)ψ|2 +

(∇×
→
A)2

8π


where e∗ is the effective charge of the condensate, which we know to be e∗ = 2e from BCS theory, α

is proportional to T − Tc, ψ is the complex order parameter for the superconducting transition, and
→
A

is the electromagnetic vector potential. In the absence of an electromagnetic field, the order parameter
spontaneously breaks the “U(1) global gauge symmetry” (i.e. the invariance to changes of phase of ψ) when
α(T ) < 0 and ψ2 = −α/β. In the following we will chose the phase of ψ to be zero, so that ψ = v ≡

√
−α/β.

(a) Let
→
A now be non-zero, and expand ψ about v to second order to find the effective free energy for the

system in terms of the real and imaginary parts of the fluctuation in ψ, ψ1 and ψ2 respectively. It will

be most convenient for you to calculate ∆F ≡ F{ψ,
→
A} − F{ψ,

→
0}. Don’t forget the gradient terms.

(b) Your resulting expression is difficult to interpret physically because it involves a cross term between a
component of the order parameter and the vector potential. Show that this can be removed by making a

gauge transformation on the vector potential:
→
A=
→
A
′

+∇Λ where
→
A
′

is the transformed vector potential
and Λ is a function that you should determine.

(c) Your resulting expression for ∆F should contain ψ1 and
→
A
′

only. What happened to ψ2? Has the
number of degrees of freedom changed during the transition?

(d) Explain the physical significance of the
→
A
′

dependence, by writing the Euler-Lagrange equations for φ1

and
→
A
′
. Be sure to explain what is the “mass” of all the fields left in the problem. What happened to

the Goldstone boson that is present in the neutral superfluid case when e∗ = 0?
This phenomenon is known as the Anderson-Higgs mechanism and plays an important role in condensed
matter physics and higher energy physics.
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