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Abstract

Supercooling of almost any liquid can induce a transition to an amorphous solid
phase. This does not appear to be a phase transition in the usual sense — it does
not involved sharp discontinuities in any system parameters and does not occur at a
well-defined temperature — instead, it is due to a rapid increase in the relaxation time
of the material, which prevents it from reaching equilibrium on timescales accessible
to experimentation. I will examine various models of this transition, including elastic,
mode-coupling, and frustration-based explanations, and discuss some of the problems
and apparent paradoxes found in these models.
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1 Introduction

While silicate glasses have been a part of human technology for millenia, it has only been
known since the 1920s that any supercooled liquid can in fact be caused to enter an amor-
phous solid “glass” phase by further reduction of its temperature. In addition to silicates,
materials ranging from metallic alloys to organic liquids and salt solutions, and having widely
varying types of intramolecular interactions, can also be good glass-formers. Also, the glass
transition can be characterized in terms of a small dimensionless parameter which is different
on either side of the transition: γ = Dρ/η, where D is the molecular diffusion constant, ρ is
the liquid density, and η is the viscosity. This all seems to suggest that there may be some
universal aspect to the glass transition which does not depend on the specific microscopic
properties of the material in question, and a significant amount of research has been done
to determine what an appropriate universal model might be.

The nature of the change which occurs during liquid-glass transitions is well established —
glass formation is known to result from a dramatic increase in the relaxation time of the
liquid, such that it acts as a solid on the timescale of any reasonable scientific experiment.
One can further extend this notion, as Maxwell did in 1867, to see that any liquid measured
on a sufficiently short timescale will behave like a solid.[3]

An entertaining example of an experiment demonstrating this behavior is the Pitch Drop
Experiment at the University of Queensland in Australia. Pitch appears to be a brittle, glassy
solid at room temperature, but as this experiment shows, over long times it will slowly flow,
exhibiting the properties of a liquid. The experiment was begun in 1927 by pouring heated
pitch into a funnel with a sealed stem. After three years of cooling and settling, the stem
was cut and the pitch allowed to flow. Over the course of the intervening decades only eight
drops have fallen from the funnel. The experimenters used this flow rate to estimate the
room-temperature viscosity of their pitch as somewhere between 106 and 108 Pa s.[4]

Technically, this pitch is not quite a solid, as a liquid is generally considered to have become
a glass only when the viscosity has increased to a level of η ∼ 1013 Pa s. This is not
an especially well-defined criterion for a transition, and so it is hardly surprising that the
glass transition temperature Tg is also not well-defined. In addition to being ill-defined,
the transition temperature can depend on the pressure, cooling rate, and other factors. In
light of the highly variable nature of the transition temperature, as well as the fact that the
various macroscopic parameters (volume, enthalpy, entropy) and the molecular arrangement
seem to be continuous across the transition, it is not believed that glass formation is truly a
phase transition in the usual sense. Instead, it is usually considered as a dynamical change,
from an ergodic to a non-ergodic state.[3, 1]

In fact, despite the general consensus that a glass transition occurs due to a dramatic increase
in the system relaxation time, there is little agreement on exactly what the mechanism is
driving this increase, or on what the proper mathematical description is for the phenomenon.
A wide variety of approaches have been proposed, but experiments have not yet been able
to determine which model, if any, is correct.
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2 Specific properties of the transition

In addition to explaining the general fact of a rapid increase in relaxation time as the system
nears the glass transition, any successful model for these systems must provide the correct
mathematical form for this increase. In order to understand this, it is helpful to know the
precise significance of the relaxation time.

2.1 Definition of the relaxation time

Beginning with the density of particles in a liquid1:

ρ(r, t) =
∑

i

δ(r− ri(t)) (1)

we can compute the Fourier transformed density

ρk(t) =
∫

dreik·r

(

∑

i

δ(r− ri(t))

)

=
∑

i

eik·ri(t) (2)

and use it to generate a correlation function for the system:

F (k, t) =
1

N
〈ρ−k(0)ρk(t)〉 =

1

N

∑

ij

〈

eik·(rj(t)−ri(0))
〉

(3)

where N is the total number of particles in the liquid. In a normal liquid, a slight perturbation
to the system will cause a perturbation in the value of F (k, t) which, for any particular value
of k, simply decays exponentially (F (k, t) ∼ et/τ ), with relaxation time τ . This is shown
schematically in the left-hand graph in figure 1. In a highly viscous supercooled liquid,
the decay is somewhat different. The short-time behavior is characterized by the stepped
shape shown in the right graph of figure 1. The long-time decay behavior, in region III
and beyond, is refered to as the α-relaxation regime. This behavior is usually fitted by a
”stretched exponential” law of the form:

F (k, t) ∼ e−(t/τ)β

(4)

where τ provides a timescale for the decay and so is referred to as the relaxation time for
these systems. Generally both τ and the exponent β will depend on the system temperature
and on the wavenumber of the perturbation being examined.

2.2 Temperature dependence of the relaxation time

The strong temperature-dependence of the relaxation time τ is the most salient feature of the
glass transition.2 The temperature dependence of this rate parameter is usually compared

1The following discussion is drawn from [5].
2This section draws on the discussion in [3]. See the references therein for more details.
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Figure 1: The graph on the left shows the exponential decay of the correlation function
F (k, t) as seen in normal liquids. Supercooled liquids have the more complex decay behavior
shown on the right, which includes the early decay behavior I, the plateau II, the β-relaxation
regimes IIa and IIb, and the α-relaxation regime III. (This diagram has been borrowed from
[5].)

to the empirical Arrhenius law for chemical reaction times, which says that τ should vary
as:

τ = τ0e
∆E/kBT (5)

where τ0 is some scaling constant and ∆E is the “activation energy”, which in this case may
be thought of as the characteristic barrier height between similar system states. In the usual
Arrhenius model ∆E is considered to be a constant, but the temperature dependence of the
relaxation time for supercooled liquids is usually much stronger than this simple relation
would imply. (This greater temperature variation is often referred to as “fragility”.) So
the glass transition is sometimes parametrized by simply saying that supercooled liquids
have a temperature-dependent value for the activation energy. One possible model for the
supercooled liquid relaxation time is the Vogel-Fulcher-Tammann expression,

τ = τ0e
A/(T−T0). (6)

This expression shows the relaxation time diverging as T → T0, a prediction which, of
course, cannot be verified experimentally, as the system will fall farther and farther out of
equilibrium as this singular temperature as approached. However, experimental fits for T0,
A, and τ0 computed away from the transition seem to break down and predict too-long
relaxation times near to the glass transition. (Note that T0 is always less than Tg, usually
significantly so.[6]) So an alternative model:

τ = τ0e
C/T n

(7)

is sometimes used instead. Neither expression has been systematically shown to provide a
better fit to experimental data.
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2.3 The Kauzmann paradox and the “ideal glass” state

Another odd characteristic of supercooled liquids can be seen in a comparison of the super-
cooled liquid entropy with the entropy of the crystallized substance at the same tempera-
ture.3 Very near the melting point, the liquid entropy is much larger than the crystalline
entropy, and the liquid state is only maintained during supercooling due to the absence of
crystal nucleation sites, and sometimes by rapid cooling. But the liquid entropy decreases
with decreasing temperature much more rapidly than the crystalline entropy, so that there
is a temperature TK at which there is a crossover between the two entropies, and the liquid
entropy becomes less than the crystalline entropy.

This extrapolation gives rise to a paradox described by Kauzmann in 1948: a supposedly
disordered liquid state should not have less entropy than an ordered crystalline state. The
paradoxical behavior is seen only in extrapolation, as it seems that experimentally the glass
transition always occurs before the Kauzmann temperature TK is reached, which prevents
the system entropy from decreasing below that of the crystal. But since the glass transition
temperature can be lowered by slower cooling, it is not clear that Tg > TK necessarily, and
it may well be the case that the liquid state could be maintained below TK .

A variety of solutions to the paradox have been proposed. It is of course possible that the
extrapolation of the liquid entropy down to TK is simply invalid, so that the paradox is no
paradox at all. Kauzmann himself proposed that below a certain temperature the rate of
crystal nucleation could become greater than the relaxation rate of the system, causing the
equilibrium liquid state to become ill-defined.

Another proposal suggests that there exists a genuine phase transition at the Kauzmann
temperature, so that the glass transition, while not itself a true thermodynamic phase tran-
sition, can still be considered as having an avoided or underlying phase transition. The most
simplistic version of such ideas assumes that the vibrational entropy of the liquid and crystal
phases are roughly the same, while the liquid has some additional configurational entropy.
In this case, the Kauzmann temperature is the temperature at which the configurational
entropy of the liquid becomes zero, resulting in a phase transition to a unique “ideal glass”
state4.

Unfortunately, this ideal glass phase, despite being supposedly unique, has never been char-
acterized. In addition, it seems that experimentally the assumption of identical vibrational
energies between liquid and crystalline phases is probably not true, and that the glass phase
entropy has a very different temperature dependence from the liquid phase. So if the glass
transition does indeed relate to some underlying phase transition, the exact relationship is
probably slightly more complicated. But the notion of an underlying phase transition is
nevertheless an appealing way to bring universality into the picture, and so several major
models include some variation of this idea.

3Discussion after [3]. See references therein for further information.
4This is such an awesome term.
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3 Proposed models for the glass transition

There are several major classes of models for the glass transition itself, each of which includes
numerous variations on the theme. No one class of models seems to be definitively superior
to the others, and all have their advantages and disadvantages.5

3.1 Models based on macroscopic system parameters

3.1.1 Entropy models

Three classes of models are based on relating the notional activation energy of the glass
transition to various macroscopic system parameters. The first class adopts the notion that
long relaxation times near the glass transition are due to decreases in number of available
configurations. It assumes that no molecule can reorient itself unilaterally, but must instead
reorient in combination with a certain number of its neighbors, and defines a cooperatively
rearranging region as one for which there are at least two different possible configurational
states. As the temperature decreases towards the transition, the minimum volume V of
these regions grows and the activation energy for transitions between system states increases
accordingly. One can postulate that

∆E ∼ V ∼ 1/Sconf , (8)

where Sconf is the system entropy. This suggests that the relaxation time should vary as in
equation 6, with the divergence temperature T0 equal to the Kauzmann temperature TK ,
and implies that glass formation is based on an underlying phase transition, as described
above. One additional concern with these models is that experimental evidence suggests
that for these models to be true, the cooperatively rearranging domains would have to be
very small, on the order of only a few molecules.

3.1.2 Free-volume models

The idea expressed in free-volume models is almost the converse of that in the entropy models.
Instead of considering groups of molecules rearranging together in regions of increasing size,
these models instead address the situation from the perspective of individual molecules,
which are supposed to need a certain amount of available volume in order to rearrange. This
“free” volume vf decreases as the liquid contracts upon cooling, and so now the activation
energy changes as

∆E ∼ 1/vf . (9)

5The discussion of models based on macroscopic system parameters and elastic models is derived from
[3]. Information on mode-coupling models comes from [1, 2, 5]. Descriptions of frustration-based models
were drawn from [6]. References for other types of models not fully discussed here may be found in [3].
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Unfortunately, there are several different definitions of free volume, some of which suggest
that vf ∼ T − T0 for some T0, leading to equation 6, and others of which suggest that vf

should become zero only as T → 0, possibly implying a model more like equation 7.

3.1.3 Energy models

Energy models simply suggest that there is some specific barrier energy E0 that must be
attained by a cooperatively rearranging region before rearrangement can occur. Assuming
such a region contains several molecules, its most likely energy is close to its average energy
E(T ), and so the activation energy, that is, the size of the required thermal fluctuation to
bring about a rearrangement, would simply be:

∆E = E0 − E(T ) (10)

But the predicted linear response for such models does not seem to match experimental
results unless the cooperatively rearranging regions are assumed to be very small, in which
case 〈E〉 ∼ E(T ) can no longer be assumed.

3.2 Mode-coupling models

Mode-coupling models begin from basic Newtonian equations of motion for the correlation
function F (k, t) defined above, which for simple liquids give the damped harmonic oscillator
relation:

F̈ (k, t) − γ(k)Ḟ (k, t) + ω2(k)F (k, t) = 0 (11)

where γ(k) is a damping coefficient and ω(k) is the frequency of the mode in question,
which for simple liquids is ω(k) = ck, where c is the adiabatic sound speed. This equation
can be generalized to allow it to represent more complex liquids, including highly viscous
supercooled liquids, as well. The simple mode frequency ω(k) can be replaced by a more
generalized function Ω(k), while the damping term γ(k)Ḟ (k, t) can be replaced by a convo-
lution of Ḟ (k, t) with a memory function M(k, t) which controls the effects of the history on
the system:

F̈ (k, t) + Ω2(k)F (k, t) −
∫ t

0
dt′M(k, t − t′)Ḟ (k, t′) = 0. (12)

Models for Ω(k) and M(k, t) can then be generated theoretically, or by parameter fits to
empirical functions. But even without a theory for these functions, some approximations can
be made for a weak interaction case by separating the memory function into a “fast” com-
ponent γ(k)δ(t), which gives the usual linear damping term, and a remainder Ω2(k)m(k, t),
which can be written to leading order in terms of pair interactions between particles in the
liquid.

These theories give significant quantitative predictions, which can work extremely well for
supercooled liquids far from the glass transition. However, they seem to break down near
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the transition, possibly due to the weak interaction approximation used to approximate the
memory function.

3.3 Frustration-based models

Frustration-based models approach the glass transition problem from a perspective of com-
petetion between local and global ordering. The idea is that the global lowest-energy state is
not necessarily the state in which each molecule is at a local energy minimum. For example,
if we assume a three-dimensional system with spherical atoms interacting via spherically
symmetric pair potentials, then the ground state for four atoms has them located at the ver-
tices of a perfect tetrahedron. For a central atom with a shell of twelve neighbors, the ground
state turns out to be a regular icosahedron. But neither tetrahedrons nor icosahedrons can
be used to tile three-dimensional flat space, and so such a system is termed geometrically
“frustrated”, as it cannot expand its preferred local configuration into a global configuration.
Instead, the globally preferred state will be one of the standard crystalline configurations
seen in nature.

Frustration models postulate that supercooled liquids are characterized by a locally preferred
structure (LPS) which is different from the crystalline structure and which cannot tile the
whole space. As described above, this has been shown to be true for liquids composed of
spherically symmetric particles, but presence of an LPS has not been proven for other types
of liquids, such as molecular liquids, mixtures, and polymers. In addition, it is postulated
that there exists some modification of the underlying spatial metric which will remove the
frustration and allow the LPS to serve as a global tiling.

These models contain an avoided phase transition in the sense that under the topology
which removes the frustration there is a transition between the disordered liquid and some
globally ideally ordered phase. However, in ordinary flat space, this global ideal ordering
is frustrated and so the transition is avoided. Instead, the cooling system tends to form
domains such that each domain has its LPS, but there is no long-range order. The differing
orderings of neighboring domains and general system frustration cause the rapid increase in
relaxation time, since it becomes difficult for the system to rearrange its ordering and find a
lower-energy state. The domain boundaries serve as defects, which can themselves become
ordered into Abrikosov or smectic phases. The avoided phase transition means that these
models tend to loosely have the same temperature dependence for the relaxation time shown
in equation 6, but no widely accepted minimal model for frustration in liquids has yet been
developed.

3.4 Elastic models

Elastic models generally explain the glass transition by finding connections between the slow
and fast degrees of freedom of the system, in the sense that the activation energy is computed
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in terms of the short-term elastic properties of the system, such as the high-frequency shear
and bulk moduli (G∞, K∞), the speed of sound c∞.

3.4.1 Harmonic models

In harmonic models, the system is characterized by the assumption that the configuration
space coordinates have a gaussian distribution, and that the square wells are separated by an
average configuration space coordinate distance a. In this case, the relaxation time should
be proportional to the inverse of the gaussian probability of finding the system a distance a
from the mean value:

τ = τ0e
λ1a2/〈x2〉 (13)

where λ1 is some numerical factor of order 1 and 〈x2〉 is the thermal root mean square average
distance of the system from an equilibrium state. This gives an activation energy:

∆E = λ1kBT
a2

〈x2〉
. (14)

The thermal RMS average 〈x2〉 in supercooled liquids usually decreases faster upon cooling
than the thermal equilibrium result 〈x2〉 ∼ T , which means that the activation energy
increases upon cooling, as it should. Some authors further suggest that the relevant energy
landscape is spatial, so that the activation energy δE should be that related to high-frequency
shear deformation, resulting in an energy of the form:

∆E = λ2a
3G∞ (15)

where λ2 is a number of order 1, a is a microscopic length scale, and G∞ is the “instantaneous”
liquid shear modulus.

3.5 Models of local expansion

These models consider the creation of sound waves which cause a local expansion of the
system sufficient to allow local molecular rearrangement. Calculation of the probability of a
thermal fluctuation creating a sound wave of sufficient amplitude results in something like:

∆E = λ3mc2
∞

(16)

where λ3 is a unitless parameter of order 1, m is the molecular mass, and c∞ is the speed of
high-frequency longitudinal sound.

3.6 Shoving model

The shoving model assumes that the most dominanant part of the activation energy is
the energy expended on “shoving” aside the immediate nearest neighbors to a molecular
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rearrangement, in which case the activation energy is again seen to be proportional to the
high-frequency liquid shear modulus G∞.

3.7 General properties of elastic models

The elastic models can be shown to give the result that the glass transition temperature
should be a definite fraction of the melting temperature, as opposed to being vanishingly
small. And indeed, this is generally true in glass-forming systems — Tg/Tm is generally
between 0.5 and 0.8. However there are significant discrepancies between predicted and
measured values of the heat capacity for these models, which may arise from the simplistic
use of the high-frequency elastic constants, instead of using more careful calculations with
perturbation wavelengths near the intermolecular spacing a.

4 Conclusions

The wide variety of possible models for the glass transition, including several not discussed
here, is a sign of how little is yet known about these systems. None of the current mod-
els seems to be completely satisfactory. And brute force simulations are still too slow to
provide useful attacks on this system.[3] So a significant amount of experimental and theo-
retical work continues to be necessary in order to further develop existing models, distinguish
their correctness empirically, and possibly motivate the development of new models. Better
minimal models of frustration, systematic comparison of the quality of fit for the two main
relations between temperature and relaxation time, and careful experiments testing whether
the glass transition temperature can indeed be brought below the Kauzmann temperature
by sufficiently slow cooling would all be helpful advances.

But the seemingly universal nature of the transition and the fact that it is parametrized
by a small dimensionless number seems to indicate that a simple and general theory should
indeed exist. We just haven’t found it yet.
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