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The dynamics of freeway traffic, though fundamentally dependent on the com-

plex interactions of many human agents, exhibit emergent behaviour which can be

modelled using the machinery of statistical physics. This observed behaviour can

be unintuitive, as in the case of “phantom traffic-jams”, whereby fast-moving traf-

fic suddenly congeals into a slow-moving jam for no apparent reason. Using models

based both on the individual motivations of each driver and on macroscopic variables

describing traffic flow as a whole physicists have been able to accurately reproduce

the dynamics of real freeway traffic flow, including these surprising experimental

observations.
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I. INTRODUCTION

The study of traffic is an area of active research almost 60 years old [1] the implications of
which can be seen in virtually every aspect of modern life. Not only are freeways essential to
modern intercity trade, intracity roadway traffic is ubiquitous in the developed world. While
the widespread nature of traffic is certainly motivation for its study, there are significant
economic gains to be made by understanding (and eliminating) inefficiencies due to congested
traffic. In the United States alone the average annual loss due to traffic jams exceeds $65
billion for the country and 60 hours for each driver [2].

In addition to the direct applicability of this research to freeway systems, there are
a number of related fields which can benefit from and influence these studies: pedestrian
traffic, both on organized walkways and in emergency situations (e.g., many people trying to
escape a burning building) [3]; flocking and herding of birds and other animals [4]; economic
systems, such as stock market oscillations [5].

This paper attempts to summarize the basics of traffic flow. Section II discusses the
empirical observations of freeway traffic, focusing on both interesting individual phenomena
(e.g., phantom traffic-jams) and those characteristics addressed by modern traffic models.
Section III discusses the modelling of traffic flow, beginning with the distinction between
microscopic models (which treat each driver as an individual particle) and macroscopic
models (which deal with system-wide variables and effects. This section will then examine
attempts to link these two regimes and conclude with a discussion of Ginzburg-Landau
theory as applied to traffic.

II. EMPIRICALLY OBSERVED DYNAMICS OF FREEWAY TRAFFIC

A. Measuring freeway traffic

Several measurement techniques are available for measuring traffic flow, vehicle speed
and acceleration, and lane-changing maneuvers. The most accurate and complete method
involves aerial photography or video-capture, a technique first introduced in the 1960’s
[6, 7]. This allows a complete analysis of each vehicle’s behaviour, but requires active
human involvement for both filming and analysis.

Another method which requires human action is car-following, by which a single car
equiped with a variety of detectors monitors the behaviour of a vehicle by shadowing or
following its movements. This gives less information that aerial methods and is more difficult
that automated methods.

The easiest way to collect information on traffic patterns uses automated detectors at
freeway cross-sections. By using single induction-loop detectors, one can measure a vehicle’s
arrival time t0α, a vehicle’s departure time t1α, a vehicle’s velocity vα, and a vehicle’s length lα,
for each vehicle α. By analyzing these results for multiple vehicles one can find the number
of vehicles ∆N that cross the detector during a sampling interval ∆T .

These measured values allow us to derive a number of useful parameters. The time

headway, ∆tα =
(

t0α − t0α−1

)

, measures the arrival time difference between following vehicles.

The time clearance, tc =
(

t0α − t1α−1

)

, measures the temporal spacing between vehicles. The
headway, ∆xα = vα∆tα, measures the spatial distance between following vehicle arrivals
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while the clearance or netto distance, sα = (dα − lα−1), measures the space between vehicles.
Of particular importance will be the vehicle flow rate,

Q (x, t) =
∆N

∆T
, (1)

which corresponds to the rate that vehicles pass the detector, and the arithmetic average

velocity,

V (x, t) = 〈vα〉 =
1

∆N

α0+∆N
∑

α=α0+1

vα. (2)

Together, equations 1 and 2 can be used to define the vehicle density ρ (x, t), which will be
of central importance to later analysis:

ρ (x, t) =
Q (x, t)

V (x, t)
. (3)

These definitions, while they may seem straightforward, lead to a subtle problem. Con-
sider the difference between measuring an ensemble of vehicles that pass a specific point
within interval ∆T as opposed to measuring an ensemble of vehicles that at a given instant
lie within a stretch of freeway ∆X. Because faster vehicles will pass a single point more often
they will more heavily influence the former ensemble average than the latter. This implies
a fundamental difference between spatial and temporal averaging. Unfortunately, equation
3 simultaneously depends on both a spatial and a temporal average. In order to correct this

FIG. 1: Comparison of empirical velocity-density relations for different definitions of the average

velocity. The ‘plus’ symbols represent one-minute averages determined using the harmonic velocity

formula: V = 1

〈1/vα〉
. The solid line is a fit to the same data interpreted using the traditional

arithmetic formula, V = 〈vα〉 [9].
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problem, we replace the arithmetic mean (equation 2) with the harmonic average velocity,

1

V (x, t)
=

〈

1

vα

〉

, (4)

which automatically grants additional weight to low velocities. Figure 11 shows a comparison
between the arithmetic and harmonic mean velocities. They show good agreement, with the
harmonic mean extending to much higher densities. The disadvantage of using the harmonic
mean is its sensitivity to errors for small velocities.

FIG. 2: The fundamental diagram: hysteresis in traffic flow and free versus congested traffic. (a)

Traffic-flow time series as a function of density. Notice that in addition to hysteresis this plot

shows two distinct regimes corresponding to free traffic flow (linear realationship between flow and

density) and congested traffic flow (erratic relationship). These regimes can be separated by the

line ρVsep, with Vsep = 70km/h. (b) Time series of traffic flow as a function of time. Immediately

after breakdown from an unstable high-flow state to a congested state, the flow falls below typical

bottleneck levels [8, 10, 11].

1 Except where noted, figures are taken from [8], Dirk Helbing’s article from Rev. of Mod. Phys.. The cite

after each figure caption refers to the source of the original data.
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B. Types of traffic flow

The empirical methods and definitions outlined in section II A provide the methods to
gather data and the vocabulary to discuss them. These methods immediately lead to the
analysis of the relationship between flow (the primary goal of traffic systems) and density
(the primary variable upon which jams are dependent). Empirical results provide us with a
fundamental diagram of flow as a function of density (see figure 2).

This time series of traffic-flow as a function of density reveals two distinct regimes: free
traffic and congested traffic. Free traffic is characterized by a linear relationship between
flow and density. This is the behaviour one would expect when the interactions between
vehicles are neglected, where doubling the number of vehicles doesn’t affect the speed of
those vehicles and therefore doubles the flow.

The second regime, congested (also called synchronized) traffic, is far more erratic and
less predictable. Real data exhibits hysteretic results widely spread in two dimensions on
the flow/density diagram. In addition, it is possible for the density to be reduced under
roughly constant flow, implying that the breakdown from free traffic to congested traffic is
not reversible. As can be seen in figure 2b, the flow rate after a breakdown can temporarily
fall below the bottleneck flow rate (the typical flow-rate for maximum density).

There is no clear division where free traffic breaks down. Instead, high-flow high-density
traffic is unstable, becoming more likely to breakdown the longer the state persists and the
higher the flow becomes. A plot of breakdown probability as a function of time and flow is
shown in figure 3. In addition, the transition from free to congested traffic is discontinuous
and exists for a wide range of densities, so that for many traffic densities it is possible to
have either free or congested traffic flow.

FIG. 3: Probability of free-traffic breakdown as a function of traffic flow. Several waiting times

are shown, showing the instability of free-traffic flow at high-flow rates [10].
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C. Characteristics of congested traffic

Even though the transition from free to congested traffic looks chaotic when its flow is
plotted as a function of density, velocity distributions very closely follow normal distribu-
tions, even for densities within the congested-traffic regime (see figure 4). The regularity
of these distributions, however, belies the range of phenomena which can occur within con-
gested traffic.

FIG. 4: Empirical velocity distributions for vehicle densities ranging from 10 to 90 vehicles per

kilometer. The solid lines represent data while the dashed lines are normal distributions having

the same mean and standard deviation [9, 12].

Rather than attempt to describe the full gamut of congested traffic, here we will describe
two interesting characteristics: stop-and-go waves, familiar to most drivers, and “phantom
traffic jams”, wherein steadily moving traffic jams up suddenly and without apparent cause.

1. Stop-and-go waves

The flow of congested traffic can often manifest as periodic waves, resulting in the in-
dividual driver alternatingly spending time stationary and in motion. These traffic waves
have a period of between 4 and 20 minutes [9, 12] and a wavelength of between 2.5 and 5
km [13]. These waves have no characteristic frequency, but instead are composed of several
frequencies. When analyzing the power spectrum of these frequencies one finds white noise
at high frequencies and a power law at low frequencies. The strength of a given frequency
is approximately proportional to ω−1.4 [14].

It is possible that this power law is indicative of the emergent behaviour of self-organizing
criticality [15]. Reference [15] argues that vehicles leaving a traffic jam self-organize by
acheiving maximum throughput (all drivers want to leave the jam as quickly as possible).
This naturally pushes flow towards its maximum, but allows small fluctuations to induce a
breakdown of this high-flow rate, far downstream. In effect, the natural tendency of drivers
to reach maximum throughput makes it far more likely that traffic jams will develop.
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2. Phantom traffic jams

Empirical evidence (see figure 5) has shown that it is possible for free-traffic to sponta-
neously breakdown into a “phantom traffic jam”, congealing into slow movement with no
apparent cause. This is in fact the direct result of the discontinuity in the fundamental
flow/density diagram, and represents the metastable high-flow high-density state devolving
into the congested low-flow high-density state which coexists on the fundamental diagram at
the same ρ. Nevertheless, the lack of an apparent cause for the spontaneous jam (such as an
accident or a bottleneck) has been the subject of conjecture in both popular and scientific
literature. Some research [16] suggests that these phantom jams are in fact caused by a lane
change directly in front of a high density section of vehicles. Even if this is true, it can be
unintuitive that such a small disturbance can have such a large effect.

FIG. 5: Data for a “phantom traffic jam,” taken using aerial photography. Broken lines indicate

lane changes. As the line slopes (vehicle velocities) decrease, the line density (spatial vehicle den-

sity) increases, corresponding to spontaneous traffic jam. The jam front then propagates upstream

with constant velocity [7, 17].

III. MODELLING TRAFFIC FLOW

A. Microscopic traffic models

A natural first step towards modelling traffic flow is to model the dynamics by which
each vehicle is governed. The most basic of these microscopic models are “follow-the-leader”
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models, where the primary influence on a vehicle’s behavior is the vehicle directly in front
of it. Each driver keeps a minimum, velocity-dependent safe distance between itself and the
vehicle in front of it. In addition, each vehicle accelerates to close a velocity differential and
deccelerates quickly to avoid a collision.

This is a good first step, but needs to be immediately adapted to account for delays due
to driver reaction time. In this way the initial theory can reproduce empirically observed
density waves which are otherwise absent. The next unsettling characteristic of this theory
is that in the absense of a leading car, traffic does not move. In other words, there is no way
to predict the motion of a lone vehicle. By adapting the above follow-the-leader model to an
optimal-velocity model, we assume that there is a preferable velocity that drivers strive for
(such as the speed limit), which in the absense of strong outside influence (nearby vehicles)
governs acceleration and decceleration. This optimal velocity model can predict excellent
results, including the existence of phantom traffic jams (see figure 6).

FIG. 6: Simulated trajectories calculated using the optimal velocity model [18] for every fifth

vehicle. As shown, this model is able to reproduce the phenomenon of “phantom traffic jams”,

shown experimentally in figure 5 [9].

The optimal-velocity model tends to produce accidents when fast cars approach slow ones
(among other problems). An “intelligent driver model” can be constructed which attempts
to take into account how actual drivers behave. This model balances the tendency of drivers
to accelerate on a free road and deccelerate when confronted with other drivers. In addition,
recent modifications [19] include memory dependent effects whereby a driver’s behaviour is
directly influenced by the driving conditions experienced over the last few minutes. This
type of model is able to reproduce virtually every important feature of the fundamental
diagram (see figure 7).

Another noteworthy school of thought within the realm of microscopic models is cellular
automata theory. Much more recent than other theories, traffic models based on cellular
automata divide both space and time into discrete rather than continuous regions and cal-
culate the next position in time and space based on the current configuration. These models
have the advantage of being computationally very fast due to their discrete nature.
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FIG. 7: Graphs of traffic flow as a function of traffic density. Here we compare simulated data

for an intelligent-driver model that incorporates short-term driver memory (a) to empirical data

taken on the German freeway A9-South near Frankfurt on July 31, 2001 (b). There is excellent

agreement between theory and experiment, showing the characteristic free and congested regimes

in addition to hysteretic effects. Figures and data from [19].

B. Macroscopic traffic models

Rather than consider the motion of each vehicle, the emergent nature of traffic allows us
to consider modelling only the macroscopic quantities involved. A number of these theories
have been suggested since the 1950’s, but have since been shown [9] to follow a general pair
of equations for density

∂ρ

∂t
+ V

∂ρ

∂x
= −ρ

∂V

∂x
+ D(ρ)

∂2ρ

∂x2
+ ξ1(x, t), (5)

and velocity
∂V

∂t
+ V

∂V

∂x
= −

1

ρ

dP

dρ

∂ρ

∂x
+ ν

∂2V

∂x2
+ ξ2(x, t). (6)

Here D(ρ) is the diffusion, ξ1,2(x, t) are fluctuations, P (ρ) is the traffic pressure, ν(ρ) is a
quantity similar to viscosity, and Ve(ρ) is the equilibrium velocity.

In general, the individual interpretations which are special cases of these equations require
fundamental vehicle conservation relations and involve macroscopic motional terms repre-
senting the convection of vehicles given their current velocity, the anticipation of drivers to
conditions in front of them, and the tendency of a system to relax over some characteristic
time into an equilibrium configuration.



10

C. Gas-kinetic models

The next step is to attempt to create a link between microscopic and macroscopic mod-
els, deriving the latter from the former. The mathematics for this process can be quite
cumbersome and in general depend on which formulations one tries to use. Though some
success has been attained (see figure 8), a completely satisfactory derivation has yet to be
achieved. These models look structurally very similar to those of gases and fluids (e.g., one
such model is based on the Navier-Stokes equations).

FIG. 8: Velocity distributions shown for different fractions of maximum vehicle density. These

distributions were obtained through numerical solution of the gas-kinetic traffic model [20].

D. Emergent order and the Ginzburg-Landau equations

Recently, Nagatani [21] has applied statistical mechanics to the traffic problem by deriv-
ing the appropriate time-dependent Ginzburg-Landau equations from other models already
discussed. He begins with a simple car-following model given by,

vα(t + τ) = V (∆xα (t)) , (7)

where ∆xα is the headway and τ is a delay time. Here, a driver adjusts his velocity based
on the observed distance to the next vehicle. Nagatani next uses an optimal-velocity given
by

V (∆xα) =
vmax

2
{tanh(∆xα − hc) + tanh(hc)} , (8)

where hc is the “safety distance” at which a driver starts to deccelerate because he is too
close to the car in front of him. This decellerating behaviour indicates a turning point in the
above equation at hc – a turning point which is necessary to derive the Ginzburg-Landau
equations.

While the full derivation is too long to be included here, it can be found in reference [21].
Here we will list only the results. The order parameter in this model corresponds to the
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headway ∆xα and the temperature corresponds to 1

τ
. Using the two equations above one

can derive

∂t1S = −[∂x1
−

1

2
∂2

x1
]
∂Φ(S)

∂S
, (9)

where S = ∆xα − hc is the normalized headway (the order parameter) and

Φ(S) ≡

∫

dx

[

V ′

48
(∂x1

S)2 + φ(S)

]

. (10)

Here φ(S) is the thermodynamic potential and

V ′ =
dV (∆xα)

d∆xα

‖∆xα=hc
. (11)

IV. CONCLUSION

Traffic, while fundamentally based on human social interactions and perceptions, can
be effectively modelled using techniques originally developed for the solution of unrelated
problems in physics. Like other emergent systems, the study of traffic has simultaneously
progressed on both the microscopic and the macroscopic front, with the most effective re-
search ultimately considering both regimes.

The success of traffic models, particularly their ability to accurately reproduce seemingly
chaotic ‘phantom’ behaviour, refutes the initial assumptions that these strange behaviours
are essentially random. This research can be extended to related problems such as pedestrian
or avian traffic, extending this fundamentally one-dimensional problem into the second and
third dimension, respectively.
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