
Emergent States of Matter

Second Quantisation Worksheet

Due 5pm Fri 2 Feb, 2018 in the ESM 569 box
NOT FOR CREDIT

The purpose of this worksheet is to bring you up to speed with second quantisation notation.
You have met it before but not all of you will be comfortable using it. We will use it later in
the course, so it is important that you have had some practice with it. This worksheet will
be marked, for your benefit, but it will not count as a homework assignment. Nevertheless,
I strongly urge you to do your best on these “five-finger exercises.” Please attempt these
questions without looking at textbooks, if you can. You will learn more by thinking about
these problems yourself.

Question QM–1.
Verify the following results for the one-dimensional harmonic oscillator with Hamiltonian
H = p2/2m + 1

2mω
2q2, where p is momentum and q is position, and [p, q] = −ih̄. Define

annihilation and creation operators

a+ = (2mh̄ω)−1/2(p+ imωq)

a = (2mh̄ω)−1/2(p− imωq).

Let the eigenfunctions and eigenvalues of H satisfy H |n〉 = En |n〉. Denote the ground
state by |0〉 so that a |0〉 = 0.
(1) [a, a+] = 1
(2) H = h̄ω(a+a+ 1/2)
(3) [H, a+] = h̄ωa+; [H, a] = −h̄ωa
(4) Ha+ |n〉 = (En + h̄ω)a+ |n〉

Ha |n〉 = (En − h̄ω)a |n〉
i.e.a+ |n〉 and a |n〉 are eigenstates of H with energies En ± h̄ω.
(5) Show that E0 = 1

2 h̄ω;En = (n+ 1
2 )h̄ω

(6) |n〉 = 1√
n!

(a+)n |0〉

Question QM–2.
Bosons are particles or quanta of integer spin, with any number of particles or quanta
being allowed to occupy a given quantum state. Consider a system with energy levels
E0, E1, E2, . . . Ek into which can be put a system with an integral number n0, n1, n2,

. . . nk . . . of non-interacting bosons. (nk is the occupation number of the kth energy level).
A state with n0 bosons in eigenstate E0, n1 bosons in eigenstate E1, . . . is written as

|n0, n1, n2, . . . nk . . .〉 .

Define the creation operators b+k and annihilation operators bk by:

b+k |n0, n1, n2 . . . nk . . .〉 =
√
nk + 1 |n0, n1, . . . nk + 1 . . .〉

bk |n0 . . . nk . . .〉 =
√
nk |n0 . . . nk − 1 . . .〉 .

1



Verify the following properties of the b+k , bk and the total number operator N =
∑
k b

+
k bk

(1) [bk, b
+
k′ ] = δkk′

(2) [bk, bk′ ] = [b+k′b
+
k′ ] = 0

(3) b+k bk |n0, . . . nk . . .〉 = nk |n0 . . . nk . . .〉
(4) N |n0 . . . nk . . .〉 = (

∑
k nk) |n0 . . . nk . . .〉

(5) |n0, n1, . . . nk . . .〉 =
(b+

k
)nk

(nk!)1/2
· · · (b+1 )n1

(n1!)1/2
(b+0 )n0

(n0)1/2
|000 . . . 0 . . .〉

(6) H =
∑
k Ekb

+
k bk is the Hamiltonian of the system.

(7) [H, b+k ] = Ekb
+
k

[H, bk] = −Ekbk
(8) e−βHb+k e

βH = e−βEkb+k
(Hint: define f(λ) = e−λHb+k e

λH and find df
dλ ).

Question QM–3.
Fermions are particles or quanta with half-integral spin, with a possible occupation number
0 or 1 for any single particle quantum state. The interchange of two fermions in a state
causes the wavefunction to change sign. Define creation and annihilation operators c+j , cj
respectively, where

c+j |n0, n, . . . nj . . .〉 = |n0, n, . . . nj + 1 . . .〉
cj |n0, n, . . . nj . . .〉 = |n0, n, . . . nj − 1 . . .〉

(c+j )2 = (cj)
2 = 0

Show that
(1) c+j cj |n0, n, . . . nj . . .〉 = nj |n0 . . . nj . . .〉 where the nj ’s are 0 or 1.
(2) Now let us see how the antisymmetry of the wavefunction gets reflected in the al-

gebra obeyed by the creation and annihilation operators. The spatial wavefunction
for the state c+k c

+
j |0, 0, . . . , 〉 is the symmetrised form of φj(1)φk(2), where φj(1) is

the wavefunction when particle 1 is placed in state j, etc. For fermions, this means
(φj(1)φk(2) − φj(2)φk(1))/

√
2. Note that the ordering of the particles is defined by

reading the order of the operators from right to left. Interchange the particles to
form the state whose wavefunction is SYM[φk(1)φj(2)]. HINT: You should do this in
several steps: remove particle 1 from state j; remove particle 2 from state k and then
add it to state j; finally add particle 1 to state k. Hence, or otherwise, show that

{c+j , c
+
k } = {cj , ck} = 0 for all j, k

{cj , c+k } = δjk

where {u, v} = uv + vu (the “anticommutator”). For the last identity, you may find
it helpful to consider the effect of the operator cjc

+
k ck acting on a state.

(3) H =
∑
j Ejc

+
j cj ; N =

∑
j c

+
j cj . H is the Hamiltonian and N is the number operator

of the system of non-interacting particles.
(4)

[H, c+k ] = Ekc
+
k

[H, ck] = −Ekck
(5) e−βHc+k e

βH = e−βEkc+k
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Question QM–4.
By considering the grand canonical ensemble density matrix ρ = 1

Z e
−β(H−µN), where

the partition function is Z = Tr e−β(H−µN) or otherwise, show that the thermal equi-

librium expectation value of the occupation number operator for the kth level is (µ =
chemical potential):

〈Nk〉bosons = 〈b+k bk〉 =
1

eβ(Ek−µ) − 1

〈Nk〉fermions = 〈c+k ck〉 =
1

eβ(Ek−µ) + 1

[Hint: write H ′ = H − µN and use Q.2(8) and Q.3(5).]

Question QM–5.
Now we are all set to see how the normal modes of a one-dimensional harmonic chain

of equal masses and springs can be described by independent particle excitations. Note
that, a priori, this is definitely a system with interactions. Consider N masses M joined
by springs of spring constant k, separated by a distance a in equilibrium. Let qi be

the displacement of the ith mass from its equilibrium position Ri and pi its momentum.
Assume periodic boundary conditions.
(1) Write down the classical Hamiltonian, and in terms of the normal coordinates

p̃k =
1√
N

∑
i

pie
ikRi

q̃k =
1√
N

∑
i

qie
ikRi

and show that the quantum Hamiltonian H0 is

H0 =
∑
k

(
1

2M
p̃kp̃−k +

1

2
Mω2

kq̃kq̃−k

)
ω2
k =

4k

M
sin2

(
ka

2

)
(2) Use the quantization condition [pi, qj ] = −ih̄δij to find the commutator [p̃k, q̃k].
(3) Show that p̃k and q̃k are not Hermitian, but instead satisfy

q̃+k = q̃−k

p̃+k = p̃−k

(4) Using the ideas of Q.1 define annihilation and creation operators in terms of q̃k, q̃+k ,
p̃k, p̃+k , which allow the Hamiltonian to be transformed into H =

∑
k h̄ωk(a+k ak + 1

2 )
i.e.a set of independent oscillators, one for each k value. From Q.1 this shows that
a+k creates a non-interacting boson with wavenumber k and energy h̄ωk. This free
particle or elementary excitation is called a phonon.
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