Phase Transitions

Homework Sheet 5
Due 10am Tue 11 April 2017, in the 563 box.

Question 5-1.

This question concerns scaling near the phase transition of the one-dimensional Ising

model, using the exact results derived previously from transfer matrix calculations.

(a)

(b)
(c)

Usually, in writing down the scaling form of (e.g.) the singular part of the free energy
density, we use the variables ¢t and h defined by t = (T — T.)/T. and h = H/kpT.
This does not apply for one-dimensional Ising model, which has a zero temperature
phase transition with essential singularity behaviour, as discussed in class. What will
be the appropriate definition of these variables for the one-dimensional Ising model?
Show that for small £ and h, the free energy and magnetisation can be written in
scaling form, and determine the exponents y; and y, defined in class.

Show that for small ¢ and h the correlation function also has the expected scaling
form.

Question 5-2.

This question is a continuation of HW 4-1, in which the mean field theory for the

Ising universality class was derived from the Hubbard-Stratonovich transformation. Here,
we use the mean field theory calculation of the Gibbs free energy to present the analogue
of the Maxwell construction for magnetic systems, and to motivate the Landau free energy.
The notation is given in HW4-1.

(a)

Consider the case of uniform magnetisation m; = m on a d-dimensional hypercubic
lattice, with coordination number z = 2d. Expand I' to quartic order in m and
show that there is a second order (continuous) transition at 7. = 2d.J/kp. From the
equation of state, check the values of the critical exponents § and § and verify they
are what we expect in MFT.

Sketch the form of H(m) and m(H) above and below the transition, as given by the
mean field theory. Notice that your answer contains an unphysical portion below T..
Explain what this region is, and why it is unphysical.

Consider the function given by

L'(m,H)=T(m) —mN(Q)H

where H is a parameter and not the function H(m), and m(H) is given by the mean
field theory. Show that the condition that L’ be minimised with respect to m implies
the equation of state H = H(m). Sketch the form of L'(m) above and below the
transition for H positive, negative and zero. Hence show that the condition that L'
be globally minimised removes the unphysical portion of the curve m(H).

Question 5-3.

The spontaneous magnetisation m per spin of the two-dimensional Ising model below

T, is given by

m® =1 — (sinh 2J/kpT) ™.
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This result was written down by L. Onsager in 1949 at a conference, but he did not give a
proof. A proof was eventually provided by C.N. Yang in 1952. According to our discussion
in class, we expect that near the critical point, we can write

m = A(=t)°[L+ B(—t)* + -]

where t = (T — T.)/T. and A and B are constants. The term proportional to B is known

as a correction to scaling, and describes behavior that is sub-dominant to the leading

asymptotics near T, given by the term (—t)°.

(a) Determine 8 and A from Onsager’s formula.

(b) Express A and B in terms of K. = J/kgT..

(c) Investigate over what range of temperatures it is acceptable to ignore the correction
to scaling. You may use Matlab or Mathematica or Python etc...

Question 5—4.

On the web page I have deposited a data file for the dependence on temperature T' of
the electromagnetic penetration depth A\(T") in the high temperature superconductor YBag-
Cu3O7_s. Analyse these data to find the critical temperature 7., Ay and the exponent y
describing how the penetration depth diverges near the critical temperature:

A= Aot

where t = (T, — T)/T.. Estimate the size of the critical region. Make sure that you
generate plots of your analyses, and in your write-up try to determine error bars on the
various quantities you were asked to find. As in the atom bomb problem, you will probably
need to do several different plots to get reliable and consistent results.

Question 5-5.

Here we will use our mean field solution of the Ising model to solve the lattice gas model
of a fluid. Please refer to section 12.2.1 of my book to remind yourself of the detailed basis
for the correspondence between the Ising model and fluid models. The relevant section is
attached to this PDF. The goal is to make a simple theory of the critical behaviour of a
fluid. Set U; = 0, and check that you understand the correspondence between the lattice
gas variables and the Ising variables. In particular, write down the relation between the
pressure and the free energy of the Ising model. Also, write down the relation between
the mean density p of the lattice gas and the mean value of the magnetisation of the Ising
model.

(a) Express Ey in terms of H and J. Using the result of HW 4-1, rewrite this in terms of
H and T.. Write down the relation between the pressure p, H(m) and S(m), using the
results from 4—1 for the uniform magnetisation case. Hence show that the equation of
state in the mean field approximation is

1
p = kgT log (—) — 2kBTcp2
1—p
(b) Show that at the critical point for the fluid (p*, p*, T),

p* =kpT.(log2 —1/2),

and T* = T,, p* = 1/2. This corresponds to the critical point H = 0, T = T, in the
Ising model.
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As in the magnetic case, a variety of analytic properties may be
proven, many of which derive from the convexity of f:

(a) B(T,1) > 0.

(b) p(T,p) is continuous.

(c) 0p/dT, Bp/Bu exist almost everywhere.

() 8p/0u = p > 0.

(e) 8p/0T = o > 0 (True in quantum statistical mechanics only, but
false for classical systems).

(f) 0p/dT is monotonic non-decreasing, which implies that the heat
capacity C, > 0.

(g) Op/0u is monotonic non-decreasing, which implies that the iso-
thermal compressibility K is non-negative.

2.12 LATTICE GASES

One of the reasons for the importance of the Ising model is that a
variety of other statistical mechanical systems can be simulated by it.
This is the topic of equivalence between models, or more precisely ex-
act equivalence or mapping. Now we discuss a simple model for the
statistical mechanics of a fluid — the lattice gas, due to Lee and Yang.
The basic idea is to relate the local density of particles in a fluid to the
local up-spin density of a magnet: We will demonstrate the equivalence
in two steps, and in so doing, we will, incidentally, expose the advantage
of the grand canonical ensemble over the canonical ensemble.

As a preliminary step, recall that the potential terms in the Hamilto-

nian (2.123) may be re-written in terms of the microscopic density of the
fluid '

N
p(r)= Zcﬁ(r —r;). ‘ (2.136)
i=1
This expression is the microscopic density, because
/ p(r)d®r = N(V) (2.137)
1%

where N(V) is the number of particles in the arbitrary volume V. Then,
using the property of the delta function that

/ £(@)b(z — a) dz = f(a), (2.138)

we write

ZUl(r.-)= Z/ﬂUl(r)J(r—r,-)d‘r=/nd‘rll,(r)p(r) (2.139)
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and
Z U(ri —rj) = Z/ Ua(r; — r’)6(r’ - rj)ddr/
i#5 i#; /9
= E/ / Us(r — r')é(r — r3)o(r' — r;)d’r dir'
i VA0
_ / / Ua(r — ©')p(x)p(r') dir d*r'. (2.140)
QJa

These expressions are not directly useful as they stan.d, because the
degrees of freedom in the grand canonical trace operation are the co-
ordinates, not the microscopic density. We will shqrtly see h'ow we can
effectively make a change of variables to the.e density co-ordu.la,tes; but
first, we need to discuss how to represent a fluid system by a spin system..

2.12.1 Lattice Gas Thermodynamics from the Ising Model

Consider a d-dimensional lattice, with co-ordination number z. Ea.mch
site can be occupied by a single molecule or not at all. The occupation
number of the i*F site, n;, takes the values 0 and 1 only. The total number

of particles in the system is
N=> n (2.141)

The occupation number n; is rather like the microscopic .dens§ty p(r) in
the continuum fluid. Thus we might guess a suitable Hamiltonian for the
lattice gas of the form

N(Q) i N(Q)
Ho= Y Ui(mit3 3" Ua(i,j)min; + O(nin;ne), (2.142)
i=1 1,7=1

so that, in the grand canonical ensemble,

1 .
HQ - ;I.N = Z(U, - u)n.- + -2- ; Ug('l,])n;ﬂj +... (2.143)

The factor of 1/2 in the above equations avoids double counting the con-
tribution to the energy from the interaction between two particles. The
Hamiltonian (2.142) only represents the potential energy of the gas; but
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this does not matter, since as we have seen, the kinetic energy only con-
tributes to the fugacity. In the following, we will actually model the con-
figurational sum Qy, rather than the full partition function.

To make contact with the Ising model, define

ni=3(148),  Si= (2.144)
=04 5;=-1 (2.145)
n; =14 S5;=+1. (2.146)

Substitution into eqn. (2.143) gives

S W) a5+ 5) = 5 S W6 -0+ 3 YWl - w)S; (2147)

and
1 . 11 .
> "L; Ua(i, j)nin; =37 %: Us(i,5)(1 + Si)(1 + S5)
11 ca 11 e
=—2--Z%:U2(1,.7)+E-Z%:Ug(l,])si.2' (2~148)
11 Uali. VS-S
+-2-.Z; 2(’7.7) iDj

If the forces between fluid particles are short-ranged and the density is
sufficiently low, then we can ignore three and higher body potentials, and
model the two-body potential by

. - _ [Us 1 and j nearest neighbors; 2.14
Ua(i5) = {0 otherwise. (2.149)

Then the right hand side of eqn. (2.148) becomes

1 1 21 U,
1. A2 s+ .S sl (2150
702 N(Q)2 5 t3 7022 Ei Sit+ = <§‘j> j (2.150)

Setting Uy = 0, we find that

Ho-pN=FE - SH;-J ) 55; (2.151)
i <ij>
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with 1
Eo = —gN(Qu + U;N(2)z/8 (2.152)
101
=H = —= - .153
H SH + 4U2z (2.153)
_J= %. (2.154)
Thus

=Tr e—P(Ha—uN)

N(Q)
= (H > ) e PHa—uN) (2.155)

1=1 n;=0,1

“lattice gas

=ePE Z1ing(H,J, N(Q))
This is our desired result — the thermodynamic properties of the lattice
gas may be obtained from the thermodynamics of the Ising model. The
reader is invited to investigate this in a subsequent example, which shows
that the ideal gas law and corrections to it, the equation of state etc. may
all be derived from the lattice gas model.

2.12.2  Derivation of Lattice Gas Model from the Configurational Sum

In the previous section, we showed that the lattice gas model is related
to a spin system. In this section, we derive the lattice gas model directly
from the configurational sum for a fluid. These two results together serve
to illustrate an equivalence between fluid and magnetic systems.

We approximate Qn by dividing space Q up into cells of linear di-
mension a, such that probability of finding more than one molecule per -
cell is negligible: i.e. a < hard core radius. Then, the measure in QN may
be replaced heuristically by

N N(Q)
/ Hddr; ~ g?N (@) E , (2.156)
Q =1 a=1
where a labels the cells and
1<a<N@®)= V‘Ef). (2.157)

Note the distinction between N, the number of particles, and N (Q), the
number of cells. Next, we replace the interaction U {r;} between the par-
ticles by the interaction energy between occupied celis:

Us(rs,rj) = Uz(a,B) ifr; € cell a and ry € cell g. (2.158)
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