
Phase Transitions

Homework Sheet 1
Due 5pm, Fri 3 Feb 2017 in the 563 box.

Please attempt these problems without referring to textbooks, although you may use your notes.
The most efficient way to learn is to attempt a question and then if you are stuck, read the
relevant section of the notes, then close the notes and try again. I would not recommend starting
this homework the night before it is due. Please do not refer to solutions of these problems provided
by earlier students in this class.

Question 1–1.
(a) By noting that the area of a right-angled triangle can be expressed in terms of the hypotenuse

and (e.g.) the smaller of the acute angles, prove Pythagoras’ theorem using dimensional
analysis. You will find it helpful to construct a well-chosen line in the right-angled triangle.
Note: the whole point of dimensional analysis is that you do NOT need to solve for the
functional form of the solution to a given problem. Thus, in this question, you must pretend
that you do not know trigonometry.

(b) Now consider the case of Riemannian or Lobachevskian geometry (i.e. the triangle is drawn
on a curved surface such as a riding saddle or a football). Does your solution to (a) still
work? If not, why?

Question 1–2.
This exercise walks you through the estimation of some complex and interesting scaling law

problems in fluid dynamics. It has several parts and be sure to answer all the sub-questions asked
in them please.
(a) The viscosity η of a classical plasma of singly-charged ions of mass mi and electrons might be

expected a priori to depend upon temperature T , mi, the density of ions n and the electronic
charge e. In fact, it is found that to a good approximation, η is independent of n. Using this
finding, show that

η ∝ m
1/2
i (kBT )α

e4
.

and determine the value of the exponent α.
(b) Now consider neutral systems at non-zero temperature T , where n is the number of particles

per unit volume. First, let’s work in the classical limit, where the interaction of particles is
described by the scattering cross section σ. Show that dimensionally, shear viscosity η has
units of momentum/area. Estimating the momentum of a classical gas, using de Broglie’s
relation, show that the shear viscosity of a classical gas is independent of n and h̄, and scales
as T 1/2.

(c) Now consider a quantum Fermi gas. In atomic traps, Fermi gases can be tuned to be in the
so-called unitary limit, where they are very strongly interacting and the s-wave scattering
length is divergent. Assuming Type I asymptotics, the s-wave scattering length does not
play a role in the problem any more. There are then only two length scales that can come
into the problem. What are they? Hence show that at temperatures much smaller than the
Fermi temperature, η ∝ n and thus independent of T . Then show that at temperatures much
larger than the Fermi temperature, η ∝ T γ/h̄2, and determine the exponent γ.
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Question 1–3.
It is 1947 and you are a spy for superpower R. You notice in Life magazine a series of time

lapse photographs of the early stages of the first test of an atomic bomb, at Trinity, New Mexico.
They are reproduced at:

http://guava.physics.uiuc.edu/∼nigel/courses/563/Trinity
The photographs show the expansion of the shock wave caused by the blast at successive times
in ms. Assuming that the motion of the shock is unaffected by the presence of the ground, and
that the motion is determined only by the energy released in the blast E and the density of the
undisturbed air into which the shock is propagating, ρ, derive a scaling law for the radius of
the fireball as a function of time. Extract data from the photographs (do it yourself – do not
just copy what is written in my book!) to test your scaling law and hence deduce the yield of
the blast. You must test your scaling law by plotting a graph. You should consider
carefully and then explain what is the most useful graph to plot. You should assume
that all numerical factors are of order unity. This information will not be declassified for another
3 years, so you may reasonably expect promotion and other rewards for your efforts.

Question 1–4.
How fast does a river flow? In North America, hydraulic engineers have found that they can make
satisfactory predictions using the empirically-obtained formula (due to Manning)

V =
1.486

n
R2/3S1/2

where V is the mean flow velocity in feet/sec, S is the slope of the river (expressed as S feet/feet,
meaning that for every foot travelled horizontally, the river rises or falls by S feet), and R is the
hydraulic radius in feet, defined as the cross-section area of the river, divided by the perimeter
that is in contact with the water. If the river has a rectangular cross-section, of depth h and
width w, then R is simply hw/(w+2h). Manning’s coefficient n accounts for the roughness of the
river bank and bottom, and is tabulated for a variety of environments through which the river
flows. For example, some typical values reported in the literature are n = 0.015 (brickwork),
n = 0.04 for a gravel bed stream. Physically, these different environments are not geometically
smooth walls, but have some pattern of roughness on them, which we will assume has a scale r.
Note the eccentric use of English units in the Manning formula. In this question, we will try to
understand the systematics of the engineers’ empirical formula, so that, for example, we can work
out how quickly rivers flow on Mars.
(a) Does the factor 1.486/n have units?
(b) Rivers flow under the action of gravity, so that the effective gravitational acceleration expe-

rienced is g sin θ ≈ gS where θ is the angle the river channel makes with the horizontal. We
expect that V = F (R, g, S, r). Making sensible, physically-motivated choices for dimension-
less variables, determine the form of V .

(c) In (b) you should have introduced a new function of a single variable, that we will call
f(z). What must be the asymptotics for small or large z (depending on how you did the
dimensional analysis) in order for it to reproduce the empirical Manning formula?

(d) Hence calculate how Manning’s coefficient depends on the physical roughness r and g. This
information would be useful for future landscape engineers on Mars ...
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