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ABSTRACT

Various aspects of the Exact Renormalization Group (ERG) are explored. In § I, we start with a

review of the concepts underlying the framework, paying special attention to developing an intuitive

picture of rescalings in an ERG algorithm (§ II). We proceed to uncover Polchinski’s ERG equation

(and its related cousins) in § III and in the process, obtain an interpretation of a continuum blocking

function. In § IV, we attempt at solving the flow equation using non-perturbative truncations and

encounter the ever-so-illuminating hurdles of handling such calculations. We conclude with hunting

for fixed points (some really cool techniques!) for ERGEs which don’t have analytic solutions.
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I. INTRODUCTION

The physical intuition behind the Exact Renormalization Group (ERG) is a very simple obser-

vation : the physics of a system depends on the scale used to describe it. In momentum space,

it involves iteratively integrating out (course-graining) high energy modes (degrees of freedom) of

the system.

ERG has as its central ingredient, the Wilsonian effective action. The action SΛ0({g0
i }) for a

system at a bare scale Λ0 encodes the kinds of interactions and the strengths of the couplings {g0
i }.

Upon (at least formally) integrating out the degrees of freedom between Λ0 and a lower effective

scale Λ < Λ0, we are left with the action SΛ({gi}). This is the Wilsonian effective action at the

scale Λ. The ERG (or flow) equation governs the behavior of SΛ under infinitesimal changes of

scale Λ→ Λ′. As we shall see (e.g. Eq (5)), it has the basic form

−Λ∂ΛSΛ[ϕ] = . . . (1)

where {ϕ} is a set of fields in the action. That there exist methods to exactly solve the flow

equation renders ERG indispensible. We will look at a class of solutions using non-perturbative

truncations, pioneered by Hasenfratz. We shall go through many of our arguments for a lattice

model, since it is more intuitive that its continuum counterpart, and since the lessons learnt carry

over to the continuous ERG limit.

II. QUALITATIVE ASPECTS

As it turns out, the correct thing to do to understand renormalization, is to add a second

ingredient to the ERG transformation (on top of the coarse-graining): a rescaling. Let us consider

a lattice, with a spin ↑ or ↓ at each site and spacing a. Let us suppose that we coarse-grain over

n × n blocks, thus replacing them by a single Kadanoff-blocked spin. As a result, the distance

between blocked spins is na. If we wish to compare the descriptions of the original and the coarse-

grained system, we should rescale na→ a; this restores the cutoff Λ→ Λ0. This is shown in Fig 1.

FIG. 1. The two steps of coarse-graining (majority rule) and rescaling are performed on the lattice. The

right inset is to be understood as fitting the coarse-grained block by zooming out and bringing in spins that

were outside the left inset.
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To note is that we shall only require locality (averaging only over local patches), and the

invariance of the partition function Z. Also, nearest neighbor (NN) interactions get spoiled to

NNN, NNNN, . . . . We shall discuss all this more in the following section(s).

The coupling (phase) space is a space labelled by {gNN, gNNN, . . .}, and by doing the RG pro-

cedure, we hop around in this space. This space can have multiple fixed points (FP) - the (usually

non-compact) manifold generated by flows into a particular FP is called the critical manifold. As

expected, the critical manifold is spanned by irrelevant deformations around the FP (Fig 2).

FIG. 2. (Part of) the critical manifold generated by irrelevant RG flows, wrt the shown FP. The red line

emanating from the fixed-point is called a renormalized trajectory. The blue line shows a flow which

starts just off the critical surface. By adjusting the bare action, this flow can be tuned towards the critical

surface.

We shall start by solving the ERG equation to determine the spectrum of FPs, and the set of

renormalized trajectories supported between them. If we find a FP, we linearize the ERG equation

about the fixed-point to determine whether the various operators {Oi} are relevant, irrelevant or

marginal. (To make contact with literature, we define the RG time t = − ln Λ/µ; in the continuum

limit, as we flow from the UV to IR, the RG time goes from tUV = −∞ to tUV = +∞.) Given a

bare action S?[ϕ] that we have solved for near a FP, the linearized flow equation about that FP is

of the form

St[ϕ] = S?[ϕ] +
∑
αi

eλitOi[ϕ] (2)

Of course, the physics is governed by operators {Oi} with λi ≥ 0, i.e. if they are relevant or

marginal. We shall now start looking at flow equations for the scalar field theory.

III. FLOW EQUATIONS FOR SCALAR FIELD THEORY

A. ERG equation : beauté dans simplicité

We work in d-dimensional Euclidean space, and shall closely follow the exposition in [1]. To

begin with, we should clarify the requirement Z ERG−−−→ Z,

Z =

∫
Λ0

DΦe−S[Λ0] =

∫
Λ
DΦe−S[Λ] (3)
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since this philosophy is central to our arguments. The partition function Z encodes the physics,

but knows nothing about the choice of a scale. However, the converse is not true : the Wilsonian

effection action does know about universal (scale/frame-independent) quantities; changing Z would

change the physics itself, not just our description of it.

In a rather abstract way, (3) is strung into the ERG equation as (see [2])

−Λ∂Λe
−SΛ[ϕ] =

∫
δ

δϕ(x)

(
ΨΛ(x)e−SΛ[ϕ]

)
ddx (4)

for some choice of ΨΛ(x). A few comments are as follows. The invariance of Z follows from a

functional integration
∫

(. . .)Dϕ of (4); the LHS is just the RG flow of Z, the RHS vanishes from

being a total derivative. The functional Ψ[ϕ(x)] is the continuum analogue of Kadanoff blocking;

to respect brevity, we shall justify this using an example. The flow equation can be read off from

(4) as

−Λ∂ΛSΛ[ϕ] =

∫ (
δSΛ

δϕ(x)
ΨΛ(x)− δΨΛ(x)

δϕ(x)

)
ddx (5)

and has the form promised in (1).

It may be obvious (we’ll assume not, and spell it out) that (5) can be obtained from an in-

finitesimal field redefinition ϕ′(x) = ϕ(x)− δtΨ(x). Then,

Z =

∫
Dϕ′e−SΛ[ϕ′] =

∫
Dϕ e−SΛ[ϕ]+G[Ψ]SΛ[ϕ]δt +O

(
(δt)2

)
, δt = −δΛ/Λ

where the Wigner function G[Ψ] is the integrand in (5); the flow equation (5) follows in the limit

δΛ→ 0. Warning : the measure Jacobian J (ϕ′;ϕ) is non-trivial, more in [3].

B. Flowing à la Polchinski

This section is (unfortunately) plagued with new notation, so we refer the reader to the appendix.

Let us begin with a bare action

SΛ0 [ϕ] =
1

2
ϕ • ∆−1 • ϕ+ Sint

Λ0
[ϕ] (6)

where ∆ in the kinetic term is the standard propagator 1/p2 and Sint
Λ0

[ϕ] contains everything else,

including the mass term. The obvious first step is to regularize the propagator :

∆UV =
CUV(p,Λ0)

p2
, ∆̂UV ≡ −Λ∂Λ∆UV. (7)

Without further adieu, let us write down the Polchinski equation [4]:

−Λ∂ΛS
int
Λ =

1

2

δSint
Λ

δϕ
• ∆̂UV •

δSint
Λ

δϕ
− 1

2

δ

δϕ
• ∆̂UV •

δSint
Λ

δϕ
. (8)

The RHS of (8) appears nasty, and without an understanding of its derivation, is opaque. For

starters, we need to do two things : by comparing with Eq (4),
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Λ2 Λ0
2 p2

FIG. 3. Behavior of the UV cut-off function CUV with momentum scale.

• determine the appropriate ΨΛ(x) that gives rise to the Polchinski equation (8), and

• interpret ΨΛ(x) as the “blocking” function.

With little justification, let us start with the ansatz

ΨΛ(x) =
1

2
∆̂(x, y)

δΣ

δϕ(y)
, Σ = S − 2Ŝ (9)

where Ŝ is a non-universal input called the seed action, and controls the precise trajectory of the

flow. A technical requirement for Ŝ is to at least share the symmetries of S; more comments later.

The flow equation (5) for the “blocking” function in (9) gives

−Λ∂ΛSΛ =
1

2

δSΛ

δϕ
• ∆̂ •

δΣ

δϕ
− 1

2

δ

δϕ
• ∆̂ •

δΣ

δϕ
(10)

which is starkly similar to (8). If we rewrite S and Ŝ as

S =
1

2
ϕ • ∆−1 • ϕ+ SR[ϕ], Ŝ =

1

2
ϕ • ∆−1 • ϕ+ ŜR[ϕ],

some work shows that in fact

−Λ∂ΛS
R
Λ =

1

2

δSR

δϕ
• ∆̂ •

δΣR

δϕ
− ϕ • ∆−1 • ∆̂ •

δŜR

δϕ
− 1

2

δ

δϕ
• ∆̂ •

δΣR

δϕ
(11)

where ΣR = SR− 2ŜR. If we set the seed action ŜR → 0, we trivially recover the Polchinski action

(8), with SR → Sint,

−Λ∂ΛS
int
Λ =

1

2

δSint

δϕ
• ∆̂ •

δΣint

δϕ
− 1

2

δ

δϕ
• ∆̂ •

δΣint

δϕ
. (12)

Some comments follow. We did this song and dance about Ŝ, is to keep track of the freedom we

have in choosing ΨΛ(x); the ansatz in (9) completely gauge fixes this ambiguity. Only a particular

choice of ŜR → 0 is the Polchinski equation, and so we have derived a generalized Polchinski flow

equation. Henceforth, we shall drop the center term, but continue to write Σint instead of Sint.
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C. Including the anomalous dimension

One of the things which makes QFT so rich is that quantum fields can acquire anomalous

dimensions, which really means that the scaling dimension of the field is not equal to the canonical

dimension. While a discussion can be found in standard QFT texts, we will be following the

approach in [5].

As we have been advertising, the ERG procedure consists of two steps: a coarse-graining,

followed by a rescaling. Traditionally, this latter operation is performed by considering an explicit

dilatation (there are various equivalent ways of doing this) and computing its effect on the SΛ.

Equivalently, as in [5], we can instead rescale all quantities to dimensionless ones using the effective

scale, Λ. That means,

ϕ(x)→ Λ(d−2)/2ϕ, x→ Λ−1x, ϕ(p)→ Λ−(d+2)/2ϕ(p), p→ Λp (13)

where the last two rescalings follow from the first two by a Fourier transform. The exponents of Λ

follow from dimensional analysis. This section will contain partial treatment of this rescaling; the

full-blown effect will be considered in § IV.

However, under an RG flow, we will have (e.g. for the kinetic term in S), in momentum space

∫
ddp

(2π)d
ϕ(−p,Λ0)∆−1ϕ(p,Λ0) −→ 1

2!

1

ZΛ

∫
ddp

(2π)d
ϕ(−p,Λ)∆−1ϕ(p,Λ) (14)

where the extra factor of Z−1
Λ can be interpreted as a field-strength renormalization (FSR) ϕ →√

ZΛϕ. When we crank the machinery further, we have extra terms cropping up as

−Λ∂Λ

∣∣
ϕ
SΛ −→ −Λ∂Λ

∣∣
ϕ
SΛ +

γ

2
ϕ •

δ

δϕ
SΛ,

δ

δϕ
• ∆̂ •

δ

δϕ
−→ 1

ZΛ

δ

δϕ
• ∆̂ •

δ

δϕ
(15)

The anomalous dimension γ ≡ Λ∂Λ lnZ is the flow of the field strength renormalization Z, as

expected. And it is here to stay, as a necessary evil of doing Λ-dependent rescalings of x, ϕ(x).

We will now do something pretty crazy : to maintain sanity in our equations, we will set ZΛ → 1.

We shall not provide a proof (for one, refer to [6]), but we have enough freedom stemming from

our good ol’ ΨΛ(x) to do this; ΦΛ(x) in fact has changed (see Eq (9)); from the flow equation (5),

we have (
−Λ∂Λ +

γ

2
ϕ •

δ

δϕ

)
Sint

Λ =
1

2

δSint

δϕ
• ∆̂ •

δΣint

δϕ
− 1

2

δ

δϕ
• ∆̂ •

δΣint

δϕ
. (16)

which we should compare with Eq (12) : only the LHS has picked up an anomalous γ.
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D. Diagrammatics for the Action

It is often useful, both from the point of view of doing certain calculations and for getting a

better feeling for the flow equation, to introduce a diagrammatic representation. We will not use

it for calculations (such as for the β function), and only provide a fleeting treatment. As is usual

in field theory, S has an expansion in the fields ϕ, the coefficients represent the coupling constants

S =
1

2!
S(2)ϕϕ+

1

4!
S(4)ϕϕϕϕ+ . . . (17)

and represent the terms as shown below.

S

p1

p3p2

S

p1

p3

p2

pn

FIG. 4. The three-point vertex; Right : The generic n-point vertex

The vertices are denoted with fat circles instead of points to remind us that the diagrams con-

tain non-perturbative information, in contrast with Feynman diagrams. Using the above examples,

it is not too hard to write down the full flow equation (16), as in Fig (5).

Some comments follow : We have used the notation [. . .](n) for the full expansion in the fields.

The operator ϕ • δϕ pulls down the factor of n from ϕn (in the parenthesis). The expression then

is to be read as order-by-order in n. The δϕ • ∆̂ • δϕ acting on Σint gives rise to the loop diagram.

Hence it is natural to associate the first term (tree diagram) on the RHS as a classical term and

the second term (loop diagram) as a quantum term. The • in the propagator implies that internal

momenta has been integrated over.

S

(n)

S

(-/\ ∂/\+n γ/2) ½               - Σƛ

(n)

Σƛ

FIG. 5. The full flow equation written diagrammatically.
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E. Polchinski ERG as a Heat Equation

We will restrict ourselves to the Polchinski equation (8), but from the discussion it should be

clear that the arguments hold true for its cousins (11) as well. To cast the Polchinski equation as

a heat equation, we begin by defining the operator

Y ≡ 1

2

δ

δϕ
• ∆̂ •

δ

δϕ
• (18)

and make the Λ dependence explicit

YΛ =
1

2

∫
p

δ

δϕ(−p)
∆(p2/Λ2)

p2

δ

δϕ(p)
(19)

Then in terms of the RG-time derivative ∂t = Λ∂Λ, the Polchinski equation (8) can be written as

−∂te−S
int[ϕ] = −Ẏe−Sint[ϕ] (20)

This has a structure of a heat equation, and is not just a random observation! This structure

implies that in order for evolution with decreasing Λ to correspond, in general, to a well-posed

problem, we must take ∆′(p2/Λ2) < 0 for p2/Λ2 <∞. In particular, we must take ∆′(0) < 0.

Further comments : The Wilsonian effective action flows under RG transformations through

a Polchinski-like (11), (12) equation. However, there are other formalisms of writing down the

effective action : a well-known example is the Effective Average Action Γint
Λ , which flows as

∂Γint
Λ [ϕc]

∂Λ
=

1

2
Tr

[
∂∆−1

IR

∂Λ
•

(
∆−1

IR +
δ2Γint

Λ

δϕcδϕc

)−1
]
. (21)

IV. SOLVING ERGE USING NON-PERTURBATIVE TRUNCATIONS

A. Setting up the Problem

Let us revisit our expression of the Polchinksi-like cousin in (16)(
−Λ∂Λ +

γ

2
ϕ •

δ

δϕ

)
Sint

Λ =
1

2

δSint

δϕ
• ∆̂ •

δΣint

δϕ
− 1

2

δ

δϕ
• ∆̂ •

δΣint

δϕ

where we will choose the seed action Ŝ to be simple

Ŝ =
1

2
ϕ • ∆−1(p,Λ) • ϕ, where ∆(p,Λ) =

CUV

p2

We also recall how to write down the terms [S](n) as in Fig (5) :

S =

∞∑
n=2

(
n∏
i=1

∫
ddpi
(2π)d

)
S(n)(p1, p2 . . . , pn)ϕ(p1) . . . ϕ(pn)(2π)dδ(d)(p1 + p2 + . . .+ pn). (22)

For the uninitiated reader, this is the sum over n-point vertices, with n undetermined (inte-

grated) momenta. The delta function ensures that momentum conservation. The action is
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non-perturbative, hence has a sum over all n ≥ 2.

Now let us scale out the engineering dimensions. Recall that the anomalous dimension γ was

an artifact of field strength renormalization, as discussed in § III C. Under the x and ϕ(x) scalings

(13), we have (
−Λ∂Λ +

γ

2
ϕ •

δ

δϕ

)
S −→

(
−Λ∂Λ +

γ − (d+ 2)

2
ϕ •

δ

δϕ

)
S

and that for p and ϕ(p),∫
ddpi
(2π)d

→ Λd
∫

ddpi
(2π)d

, δ(d)(p1 + . . .+ pn)→ Λ−dδ(d)(p1 + . . .+ pn).

Note that the operator ϕ • ∂ϕ counts the number of fields. We are sweeping some details under the

rug; adding everything gives us (we have skipped writing “int” in view of clarity)

(∂t + [ϕ]∆ϕ + ∆∂ − d)S =
δS

δϕ
• C ′UV

•
δΣ

δϕ
− δ

δϕ
• C ′UV

•
δΣ

δϕ
. (23)

We are warranted to make several comments. [ϕ] = γ + (d− 2) is the complete scaling dimension

of ϕ, from FSR and from (13). ∆ϕ counts the number of fields {ϕ} as we just remarked above.

This is the full flow equation for the Wilsonian effective action after rescalings have been taken

into account.

B. The Derivative Expansion

The ERGE in (23) is an integro-differential equation, contains variational derivatives and is

non-linear. From our experience in PDEs, we know that we have a difficult problem at hand -

more so since we also have to tackle problems with non small parameter (i.e. perturbation theory

isn’t applicable); this has been explored in [7]. As is expected, the exact solutions are known for

very special cases.

An alternative is to re-write the action in terms of derivatives of the field

SΛ[ϕ] ∼
∫
ddx

(
VΛ(ϕ) +

1

2
(∂µϕ)2KΛ(ϕ) +O(∂4)

)
(24)

where VΛ(ϕ) is a local potential not carrying any derivatives, and O(∂4) are clubbed as non-local

terms. Warning : That this works in practice, is surprising! At any rate, we shall begin with a

simple example : set KΛ(ϕ)→ 1 and throw away the non-local terms, as in

SΛ[ϕ] ∼
∫
ddx

(
VΛ(ϕ) +

1

2
(∂µϕ)2

)
(25)

This is called the local potential approximation, see [8]. In contrast to (14), the potential term does

not renormalize : the Λ dependence of ϕ is exactly canceled by the measure and the derivative.
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C. The Hasenfratz Projection Method

One way to re-write (25) is to take the action in (22)

S =
∞∑
n=2

(
n∏
i=1

∫
ddpi
(2π)d

)
S(n)(p1, p2 . . . , pn)ϕ(p1) . . . ϕ(pn)(2π)dδ(d)(p1 + p2 + . . .+ pn)

and impose the conditions

S(2)(p,−p) =
1

2
p2 + S(2)(0, 0),

S(n>2)(p1, . . . pn) = S(n>2)(0, 0 . . . , 0). (26)

Seeing this is crucial to our calculations : let us first define the action of a projector P (x) on some

test functional G[ϕ] (for details see [9])

P (x)G[ϕ] = ex∂/∂ϕ(0)
∣∣∣
ϕ=0

(27)

which has a nice factorization property

P (x)
(
G1[ϕ]G2[ϕ] . . . Gm[ϕ]

)
=
(
P (x)G1[ϕ]

)(
P (x)G2[ϕ]

)
. . .
(
P (x)Gm[ϕ]

)
leading to the simple result

P (x)S[ϕ] =

∞∑
n=2

S(n)(0, 0, . . . , 0)xnδ(0). (28)

The delta function can be swept away by putting the system in a finite box.

D. Projection of the flow equation

The remarkable feature of Eq (28) is that projecting the flow equation leads to a simple mixed

PDE in the local potential. Let us re-produce the (re-scaled) ERG equation (23) for convenience :

(∂t + [ϕ]∆ϕ + ∆∂ − d)S =
δS

δϕ
• C ′UV

•
δS

δϕ
− δ

δϕ
• C ′UV

•
δS

δϕ
.

where we have sent Σint → Sint by requiring Ŝint → 0. This is the Polchinski regime. For the

classical term,

P (x)
δS

δϕ
=

∞∑
n=2

S(n)(p, 0, . . . , 0)nxn−1δ(p) = V ′(x, t)δ(p)

=⇒
∫
p

(
P (x)

δS

δϕ

)
C ′UV

(
P (x)

δS

δϕ

)
= C ′UV(0)V ′2(x, t) ≡ −K0V

′2(x, t), K0 > 0 (29)

One can only admire the cleanliness. The quantum term is∫
p
C ′UV

δ2S

δϕ(p)δϕ(−p)
=
∞∑
n=2

S(n)(p,−p, 0, . . . , 0)n(n− 1)xn−2 = V ′′(x, t)

∫
p
C ′UV(p) ≡ −I0V

′′ (30)
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Both K0 > 0 and I0 > 0 follow from §III E. Putting two-and-two together and recalling that LPA

(25) corresponds to the anomalous dimension γ = 0, we have

∂tV (x, t) = I0V
′′ −K0V

′2 − d− 2

2
xV ′ + d V (31)

In fact, we can try to make it simpler by a rescaling :

V → I0

K0
V, x→

√
I0x,

such that (31) becomes

∂tV (x, t) = V ′′ − V ′2 − d− 2

2
xV ′ + d V (32)

This is nice because it is just a non-linear PDE, as promised; also it is manifestly independent of

any cut-off function.

E. Finding Fixed Points

The requirement of a fixed point V∗ is ∂tV = 0. Then from (32),

V ′′∗ − V ′2∗ −
d− 2

2
xV ′∗ + dV∗ = 0 (33)

To solve this, we need two boundary conditions. Let us make a simple choice

V ′∗(0) = 0, V∗(0) = λ ∈ R (34)

where by V ′∗(0) = 0, we demand an even potential. But the solution for V∗ is a λ-parametrized set

of fixed points. That ain’t correct : we know that in d = 3 scalar QFT, we have a Gaussian FP

and a Wilson-Fisher FP as critical FPs. Something must go wrong to signal a breakdown for most

solutions.

To see this, first we note that Eq (33) doesn’t have an (at least easy!) analytic solution. We

attempt to solve it numerically using our favorite method, using a seed value of λ = V∗(0). The

solution V (x, t) must be analytic for all x. Numerically, we compute the value x = xc for which

V (x, t) diverges; only the solutions V (x, t) for which xc →∞ are acceptable.

It turns out that only for V∗(0) = 0 does xc →∞ for d = 4. Another method is to hunt for V (x)

that directly gives us globally non-singular solutions. From that we can back-track the requisite

boundary conditions. For e.g., V (x) ∼ x2 at large x gives us a discrete set of fixed points - we will

not provide the proof, and is left as an exercise for the reader.
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xc

V*(0)

FIG. 6. Cartoon of xc at which V (x) diverges plotted against the seed value λ = V∗(0).

V. APPENDIX

The ERG literature is usually plagued with notation that is remarkably compact. We provide

a non-exhaustive list of notations.

• Integrals are written as ∫
x
≡
∫
ddx,

∫
p
≡
∫

ddp

(2π)d

The dimensions we are working in should be clear from context.

• Functional derivatives with respect to ϕ(•) are denoted by δ/δϕ(•) and satisfies

δϕ(y)

δϕ(x)
= δd(y − x),

δϕ(q)

δϕ(p)
= (2π)dδd(q − p)

• Both inner products and integrals over unfixed momenta are (unfortunately) written in an

identical way - the meaning should be understood from context

A •B ≡
∫
p
A(p)B(−p) =

∫
x
A(x)B(x)

A •K •B ≡
∫
x

∫
y
A(x)K(x− y)B(y)

• Engineering dimensions are written is [ • ]c, with the understanding

[L]c = −1, [Λ]c = 1.

From this, the other dimensions are clear

[ϕ(x)]c =
d− 2

2
, [ϕ(p)]c = −d+ 2

2
.
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