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Abstract

Lattice models with simplified interaction potentials have been used to analyze the
ability of certain amino acid sequences to adopt a unique configuration in space [1, 2, 3].
Furthermore, phenomenological models have been used to predict protein folding ki-
netics amongst a subset of energetically favorable states [4, 5]. In the following, I will
specifically discuss both the use of two dimensional lattice models and simple rate
matrices to describe the transition of disordered proteins to a unique native state (or
subset of states). Furthermore, I will discuss the use of both molecular dynamics sim-
ulations and experimental techniques to observe specific pathways for protein folding
and provide direct connections to theory.
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1 Introduction

The central dogma of molecular biology describes the typical cellular use of genetic infor-
mation in the construction of proteins. Construction proceeds from DNA — RNA through
a process known as transcription and then from RNA — Protein in a process known as
translation. Translation is performed by the ribosome, a cellular organelle, which sequen-
tially converts the nucleotide sequence of RNA into a growing protein chain of amino acids.
The shape and function of nascent proteins are then ultimately determined by the specific
sequence of amino acids [6] . Thus, the diverse phenomena of the cell are largely explained
by the translation of genetic information, in the form of a nucleotide sequence, into proteins,
in the form of a distinct amino acid sequence.

1.1 Brief Overview of Protein Folding

A common starting point for providing a theoretical explanation of protein folding is the
assumption that an amino acid sequence specifies a distinct three dimensional native con-
figuration [5, 7]. Furthermore, we may refine the assumption by adding that a protein will
adopt the configuration which minimizes overall free energy of the system and that this con-
figuration coincides with the native state of the protein under physiological conditions [8].
For an extensive study of the thermodynamics of protein folding, please see [9]. Utilizing
the previous assumptions, the problem of protein folding is simplified to predicting the final
structure given a unique sequence of amino acids.

Under physiological conditions, a protein not only needs to reach a repeatable native
state, but it must do so on an appropriate timescale. Thus, cells need a way to regulate
folding kinetics of nascent proteins to ensure proper function. Experiments have shown that
appropriate enzymes may greatly accelerate the folding process towards the native state [8].
In general, enzymes that aid in proper folding are known as chaperones [6]. Chaperones
likely play a large role in both ensuring proper protein placement and regulating folding
kinetics within the cell [6].

1.2 Personal Interest

The problem of protein folding lies at the intersection of both biology and physics. On the
biological side, proteins are responsible for practically all cellular processes. On the physical
science side, the energy landscape of protein confirmations contains many metastable states,
and is largely susceptible to solvent and temperature effects. Furthermore, the apparent
simplicity of the cellular machinery for construction of proteins (the reading of a four letter
code to produce a polymer of amino acids [6]) is amazing considering the diverse functions
carried out by proteins. Thus, the protein folding problem lies at the heart of understanding
how nature can use simple building blocks to synthesize exceedingly complex systems with
robust functionality.



1.3 Model Systems

To characterize both the existence of a unique native state and the kinetics of protein folding,
several model systems have been employed. Specifically, lattice models with simplified inter-
action potentials and mean field theory have been used to determine the ability of sequences
of amino acids to adopt a compact structure [1, 10]. Furthermore, rate matrices have been
used to model folding kinetics around a native state [4]. Another, slightly more complicated,
approach to modeling protein folding involves using molecular dynamics simulations. Cur-
rent advances in computing technologies have allowed all-atom simulations to probe several
microseconds over a folding trajectory [11]. With the three aforementioned techniques in
mind, the following methods section will give an explicit example of each approach and then
conclude with a short description of experimental techniques to capture protein folding on
a short (us) timescale.

2 Methods

2.1 2-D Lattice Model

One of the simplest models for protein
folding consists of a two letter amino acid
code (hydrophobic or hydrophilic) placed
on a two dimensional square lattice [1].
The main advantage of this model is that S S S H5 P6
for small polymer chains the entire space
of different sequences and spatial config-
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urations can be enumerated. To consider S S S H8 P7
the implications of the 2-D lattice model I
will follow the results and notation of [1] S S S PO N
and consider the case of a ten monomer
chain. S S s | P10 | s

For the model system, we fill each
lattice position with either solvent, a
hydrophilic residue, or a hydrophobic
residue and we only consider interac-
tions amongst non-sequential hydropho-
bic residues. Thus, for a system of ten
residues, we have the following partition
function:

Example of a ten monomer protein on a two dimen-
sional lattice with one non-sequential hydrophobic
interaction between H5,HS8

Z =" g(m)etmr (1)

In the above equation, m is the number of non-sequential hydrophobic interactions; g(m)
is the degeneracy of the state with m interactions. € is the energy (divided by kgT') of the
hydrophobic interactions. Notice that the e term is arbitrary and is used to make the state



with the most possible hydrophobic interactions the zero energy state. Now, we wish to
look for states that meet two conditions: 1. They have a minimum configurational energy;
2. They are maximally compact (where compact refers to a state where there are no solvent
sites interior to the polymer). We expect the existence of maximally compact, minimum
energy states to suggest a native configuration for the protein. The measure of compactness
for the system is given by:

m—+u

(2)

" s
Here, m is the number of non-sequential hydrophobic interactions; u is the number of other
non-sequential interactions. t,,,, is the number of non-sequential interactions for a maxi-
mally compact state.
Now that we have established the partition function and the measure of compactness, we
consider the average compactness for the states and the most likely value of compactness as
a function of e.
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We look for amino acid sequences that adopt a value of compactness near 1. These sequences
can be identified as having a well defined folded state (or subset of states). Notice that as
€ — —oo, we expect that p* samples states with minimum configurational energy.

From the data [1], there are three distinct cases which depend on amino acid sequence.
The value for < p > may never approach 1, which implies no subset of folded configurations.
Otherwise, the value of < p > may approach 1, but the value for p* may approach 1 through
one or two steps, corresponding to a first-order folding transition or transition through a
folding intermediate respectively. Now, specifically for the ten monomer chain, there are
1024 possible sequences. Of these sequences, only 259 yield values of < p > that tend to
1, suggesting a folded state. Furthermore, the majority of these sequences do not have a
unique minimum energy state, implying a subset of possible folded configurations [1].

Results consistent with the two dimensional lattice model have also been obtained using
a mean field approach [10]. In the mean field theory, the fraction of hydrophobic residues in
the interior of a protein were calculated again using a non-sequential hydrophobic interaction
energy. The mean field theory did not, however, impose strict constraints on the sequential
ordering of the amino acids, which yielded greater folding probabilities for chains with few
hydrophobic residues [1, 10].



2.2 Rate Matrix Kinetics

Another approach to modeling protein folding involves using a Hamiltonian that assigns an
energy to all native (folded state) contacts between amino acids and a different energy to
all non-native contacts. The term contact refers to the juxtaposition of two non-sequential
amino acids in space. Following the notation of [4], the energy for a state « is given by:

H,=¢en Z C%CiN + enn Z Ci(1— CN (N is native structure) (6)

(7)

o _ 1 contact between residues © and j exists in structure «
| 0 otherwise

Furthermore, transitions amongst states are modeled with the use of a rate matrix &k, which
governs the equation:

dpa
Z kapps (8)

In the above equation, p, is the probability that the protein is in state .. Using the model
Hamiltonian in (6) and Kramer’s approximation (see [4]), the coefficients of k can in princi-
ple be computed.

To discuss the qualitative implications of a rate matrix model, we will now assume a
specific form of k and consider the effects for certain rate coefficients. Following [4], we
assume k is composed of n blocks (representing n intermediate states) and one extra row
representing the folded state. Let k£ have the form:

ki within a intermediate block
ko  beween intermediate blocks
kony  from intermediate to native
kno from native to intermediate

(9)

kop =

The diagonal terms of k are fixed so that the rate equation (8) obeys conservation of prob-
ability.

Now, we can discuss the implications for the kinetics of folding due to different coefficients
for k. Specifically, consider the case where koy >> ko. In this case, the protein will likely
transition through the native state as it samples other intermediates. Thus, the native state
acts as “kinetic hub” (using the language of [4]). In the opposite case, where kg >> ko, we
have a different scenario. In this case, the protein will likely sample the intermediate states,
with a small probability to fold into the native state [4].

2.3 Molecular Dynamics Simulations

Classical molecular dynamics simulations use Newton’s equations of motion ( f = md) to
approximate the trajectory of a system through phase space. Concerning protein folding, a



common system would be comprised of water molecules, ions, and a protein configuration
(usually taken from an x-ray crystal structure). The force on each atom in the system, typi-
cally including electrostatics, dispersion, and bond constraints, is computed and the system
is moved forward in time by integrating the equations of motion. A correct parameterization
of forces on each atom and an adequate time step are thus pivotal to a reasonable represen-
tation of the system. An explanation of force field parameters can be found in reference [12].
For the rest of this section, we will focus on a specific result using the molecular dynamics
software NAMD [13].

The typical folding time for even small amino acid segments may extend into the mil-
lisecond range. For a molecular dynamics simulation with a typical time-step of 1 fs, the
millisecond timescale poses a major feat for both computation time and storage of data. To
overcome these hurdles, researchers have used enhanced sampling methods to force a system
to explore phase space in more computationally feasible (us) times. Specifically, in a recent
study involving the folding of a five-helix bundle fragment of A-repressor, the temperature
of the system was stochastically varied as a function of time [11]. Exposing the system to
high temperatures allows the protein to move out of possible metastable traps in the folding
trajectory.

Results from the trajectory of A-repressor with enhanced sampling showed the protein
adopt the native state (as seen from the crystal structure) twice over a 10 us trajectory. In
contrast, a 100 us simulation of the denatured protein with a constant temperature failed
to show full folding [11]. The inability to observe folding over the longer trajectory likely
points to a free energy profile for the protein that has many metastable wells. Thus, en-
hanced sampling methods provide a useful tool to examine the full range of intermediates
along a folding pathway but fail to provide detailed kinetic information about folding events
due to the large perturbation of the system at each time-step.

2.4 Experimental Fast Folding

The timescale for protein folding after denaturation from different stimuli, such as temper-
ature or pressure, may vary greatly. Specifically, for the aforementioned A-repressor, the
folding timescale from a pressure denatured state is known to be around 2 us [14]. This
result allows for direct comparison with molecular dynamics simulations and can be used to
refine protein folding force fields. Furthermore, for fast folding proteins, the denatured state
may provide an important intermediate along the normal folding pathway:.

To resolve protein folding on the microsecond time scale, researchers use fluorescence
techniques to monitor the local environment of key amino acids in the protein. Upon a pres-
sure jump, fluorescence measurements can confirm the transition to some denatured state.
Furthermore, the fluorescence data can be used to measure the fluctuations along the fold-
ing pathway to the native state upon return to normal pressure [14]. Through a series of
temperature or pressure jump denaturations, experimental data can be compared directly
to the enhanced sampling methods used in molecular dynamics.



3 Discussion

3.1 2-D Lattice Model

An obvious oversimplification of the two dimensional lattice model is the exclusion of entropic
effects, which may be even more important in three dimensions. However, short proteins
in two dimensions do maintain a surface-to-volume ratio similar to long proteins in three
dimensions [1]. Furthermore, the simplicity of two dimensions allows an exact characteriza-
tion of short polymer sequences. For more complicated three dimensional lattice models, we
refer the reader to the references [3, 15].

Another simplification that needs consideration concerns the reduction of amino acid
types to hydrophobic or hydrophilic. In a normal cell, amino acids may be polar, acidic,
basic, or hydrophobic; side chains for each type may vary greatly in size [6]. To explore the
ramifications of this simplification, a model has been proposed that considers four types of
amino acids, namely hydrophobic and hydrophilic each with a spin value 0 or 1. The en-
ergy between non-sequential residues is then determined based on both the spin and type of
residue [2]. One of the main qualitative differences presented by the increased complexity of
the four amino acid type model is the existence of a larger set of minimum energy structures
compared to the two type model. This is to be expected due to the increased interactions
possible, which yield more diverse folded structures [2].

A final major consideration involves the use of a more complicated interaction potential.
The most simple two dimensional lattice model only involves interactions amongst non-
sequential hydrophobic residues, which neglects favorable interactions amongst hydrophilic
residues and solvent and unfavorable interactions amongst hydrophobic residues and solvent.
To use the most realistic interaction potentials, standard all-atom molecular dynamics sim-
ulations are often employed. Complex potentials, however, drastically slow the calculation
of trajectories due to the computation of forces for all atoms in the system. For a review of
the effects of multiple simple lattice potentials, the reader is referred to [3].

Despite the drastic simplifications of the two dimensional lattice model, several qualita-
tive aspects of the protein folding problem are reproduced. First of all, for a subset of the
overall sequences, a first order folding transition occurs as the interaction energy is increased
[1]. Notice that physically a change in interaction energy may be the result of a change in
local solvent content or the presence of a chaperone protein. Furthermore, many states do
not have a distinct free energy minimum, corresponding to a subset of long-lived intermedi-
ate states [1]. This result may partially be due to the simplicity of the interaction potential,
but molecular dynamics simulations of actual proteins do indeed show slow folding pathways
indicative of a glassy free energy surface [11].

3.2 Rate Matrix Kinetics

The major simplification of the rate matrix model presented [4] concerns the uniformity of
the rate constants. We expect that transitions amongst intermediate states are not uniform
and that a realistic protein may spend the duration of its existence in the cell exploring a
confined region of configuration space. The experimental evidence for the previous statement
is clearly seen by considering pressure denatured proteins [14]. Fast folding after a pressure



jump implies that the denatured state does not explore the majority of possible intermediate
states. However, the simplification of uniform rate constants allows the the model to be
exactly solved and thus provides interesting insights into possible kinetics.

Perhaps the most interesting result of the rate matrix approach is the existence of two
qualitatively different kinetic theories, namely the long-lived folded state and the “kinetic
hub” [4]. Both behaviors could be used in regulatory roles in the cell. For example a
long-lived folded state may be necessary when a chaperone is needed for proper folding.
The protein would likely not fold on its own, as transitions between intermediate states are
favored, but with the help of a chaperone would form a stable state to be used for a specific
function. The “kinetic hub” scenario may be necessary for proteins that spontaneously
form in solution, as the folded state would predominate, allowing a necessary function to
be stochastically achieved. Thus, coupled with a simplistic lattice model, the rate matrix
approach provides a useful theoretical tool to probe possible protein interactions leading to
a native state.

3.3 Molecular Dynamics Simulations

Molecular dynamics simulations enable researches to mine data from a complex system us-
ing a set of fundamental stochastic differential equations [13]. As noted earlier, the accurate
reproduction of physical phenomena during a simulation relies on the parameterization of
the forces amongst atoms [12]. Thus, the correct parameterization of molecular models is
of utmost importance in producing accurate protein folding simulations. To ensure correct
parameterization of model systems, direct comparison with experiment is pivotal. Hence,
folding simulations should be closely tied to experimental folding on a us timescale (see
(11, 14])).

To simulate folding of large proteins and/or to reach long timescales, several coarse-
grained models have been proposed (for a thorough review see [16]). A typical coarse-grained
model represents a group of atoms in a system as a bead. The bead then interacts with the
system through a redefined interaction potential. Coarse-graining can thus drastically lower
the number of particles in a system, and the dynamics are typically much faster than all-
atom simulations [16]. Coarse-graining, however, is highly sensitive to parameterization.
Furthermore, parameters must be tweaked to reproduce all-atom phenomena, because a di-
rect experimental measurement of a coarse-grained parameter may not be feasible. We do
expect coarse-grained models to work well for systems comprised of only a few different types
of monomers, including lipids and certain simple proteins [16], because much conformational
information about individual monomers is lost in the coarse-graining process.

Another important consideration for simulations involves the representation of solvent
degrees of freedom. Several water models are commonly employed in molecular dynamics
simulations that yield different diffusion coefficients and radial distribution functions (for a
review of all-atom water models and their properties, see [17]). The choice of water model
again reflects the need to closely tie simulation to experimental data. Simulations can give
useful extrapolation to novel systems using parameterized force fields, but the results should
be compared to a known structure or pathway for verification.

Even with the possible problems inherent in using a parameterized force field, molecular
dynamics simulations are currently the pinnacle of accurately representing protein folding



through a lattice model. Furthermore, with the experimental capabilities of observing folding
pathways on a us timescale, simulations provide an ideal setting to probe specific intermedi-
ate states between known configurations. To reliably proceed to the study of folding amongst
protein complexes or large proteins, advances in both computational resources and force field
development will be necessary.

4 Further Considerations

4.1 Theory

Thus far, we have considered protein configurations to consist of a set of coordinates for each
amino acid on a lattice. In this section, we will briefly discuss a different viewpoint, namely
the characterization of the energy spectrum for folding. We take as our starting point the
perhaps naive assumption that the “energies of different conformations should be considered
independent random variables [5].” Furthermore, a specific sequence of amino acids is taken
to be a specific realization of disorder for the system [5]. These assumptions correspond to
the random-energy model [18]. The random-energy model provides a standard starting point
for more complicated theories of the protein folding energy landscape.

We will now state a few of the interesting properties of the random energy model (for a
more complete discussion and derivations, see the appendix in [5]). The following properties
are paraphrased from [5].

1. The energy spectrum contains both a quasicontinuous portion and a discrete portion
2. Above a certain temperature (7y), the system explores the quasicontinuous portion
3. Below T%, the system explores the discrete portion

Thus, the random energy model qualitatively reproduces the folding transition at a certain
threshold temperature. The transition implies that entropic considerations dominate above
Ty and become negligible below 7. This result is consistent with the findings in the two
dimensional lattice model, where a transition occurred for a specific value of the amino
acid interaction energy. Lowering the temperature in the random-energy model corresponds
to raising |e| in the lattice model. The random-energy model also makes an important
connection between protein folding and theories of disordered systems (see [5] for more
discussion).

4.2 SNARE Complex Formation

We now discuss a specific system where the formation of a helical bundle through the folding
of multiple proteins is observed. The explanation of the folding pathway for such systems
is at the frontier of current molecular dynamics simulations. The soluble N-ethylmaleimide
sensitive factor attachment protein receptor (SNARE) complex is vital in synaptic trans-
mission [19]. The SNARE complex is comprised of three proteins that are thought to
undergo a drastic transition from a disordered state to an ordered four-helix bundle [19].
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To understand how the SNARE complex
is regulated, a sequential ordering of fold-  Vegicle
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sible timescale.

4.3 Closing Thoughts

The theoretical and experimental techniques covered in this paper are a very small subset of
the ongoing research into protein folding. For the interested reader, please see the following
references, which are mostly theoretical in nature [5, 9, 15, 20]. Also, multiple groups at the
University of Illinois at Urbana-Champaign are currently doing research on protein folding.
We have specifically discussed two examples, namely Dr. Klaus Schulten [11] and Dr. Martin
Gruebele [14] who are active in molecular dynamics simulations and experimental fast folding
respectively. Finally, I would like to thank Dr. Nigel Goldenfeld for a great semester in Phase
Transitions.
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