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Abstract

Dimensionality of system plays a vital role in physics. Recent developments in

ultracold gases provide the possibilities to explore low-dimensional region. In this paper,

I will focus on two kinds of phase transitions in two-dimensional Bose gases: one is

the Berezinskii-Kosterlitz-Thouless (BKT) phase transition; whose disordered state is

characterized by the proliferation of topological vortices pairs; the other is the normal-

to-super�uid transition occurred in optical lattice at the zero-temperature limit, the

physics of which can be described by Bose-Hubbard Model. I will present theoretical

approach to these two problems, and then discuss recent experimental results which

provide a clear demonstration for these critical phenomena.
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1 Introduction

Dimensionality plays a vital role in physics. A wealth of new phenomena associated with
lower dimensions have been investigated both experimentally and theoretically, such as Dirac
cone on graphene, quantum Hall e�ect and so on. Phase transition, one of the most fasci-
nating phenomena in physics, is highly dimensional dependent. Taking the well-known Ising
model as an example, if d = 1, there will be no phase transition at any �nite temperature,
but not the case if d ≥ 2. Further study demonstrates that the critical exponents derived
from mean �eld theory are not correct unless d > 4.

In conventional condensed matter physics, thin �lms or nanowires can be regarded as
typical two- or one-dimensional system. While for cold atomic system, the ability to impose
strong con�nement along one direction in a trapping potential makes it possible to create
highly �attened clouds of atoms, providing a well-controlled platform to study this area.

In this paper, I will focus on two interesting phenomena in two-dimensional Bose gas:
one is Berezinskii-Kosterlitz-Thouless (BKT) transition, which is special since the system
goes from disorder to quasi-long-range order state; the other is quantum phase transition
described by Bose Hubbard model occurred in the vicinity of zero temperature. Optical
lattice formed by standing waves provides an ideal emulator of this model.

2 Berezinskii-Kosterlitz-Thouless (BKT) Transition

BKT transition is an important phase transition occurred at two-dimensional system. It
involves the emergence of topological charge pairs (i.e. vortices) above a critical temperature.
By the fact that in thermal equilibrium at �nite temperature, the free energy F = E − TS
must be minimized, it is easy to capture the physical picture of BKT transition. Because
the excitation energy corresponding to a vortex is ρs

2

� L
a
d2r 1

r2
= πρ ln L

a
, while the number of

possible con�gurations to create a vortex in the system with area L2 is L2

a2
, the change in free

energy ∆F = πρs ln L
a
− 2T ln L

a
. If T > Tc = πρs

2
, the proliferation of vortices is preferable.

2.1 XY Model[1]

As a theoretical preparation for our following discussion, the classical XY model is introduced
�rst. As we will see later, it can describe BKT transition. The Hamiltonian of a classical
XY model on a two-dimensional orthogonal lattice sites is

HXY = −J
∑
<i,j>

cos(θi − θj), (1)

where 〈i, j〉 indicates nearest-neighbour sites. By expanding it to quadratic term, we have

cos(θi − θj) ≈ 1− 1

2
(θi − θj)2.

The validity of the above approximation requires θi − θj is small compared with π. To
ful�ll it, we can write θi − θj = 2πn+ ε (ε� π), then the partition function becomes

Z = e−βHXY = exp[βJ
∑
〈i,j〉

cos(θi − θj)]→
∞∑

m=−∞
eβJ exp{

∑
〈i,j〉

[−βJ
2

(θi − θj − 2πm)2]}.
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For the right-hand side, the term with minimum value of (θi − θj − 2πm)2 dominates, and
this term supports the above approximation.

To transform the above expression into a Gaussian integral, we use Poisson's equation,

∞∑
m=−∞

h(m) =
∞∑

l=−∞

� +∞

−∞
dφh(φ)e2πilφ,

and up to some constant factor, the partition function becomes

Z =
∞∑

m=−∞
eβJe

∑
〈i,j〉[−

βJ
2
(θi−θj−2πm)2] ∼

�
Dθ

∞∑
lij=−∞

�
dφeβJe

∑
〈i,j〉[−

βJ
2
(θi−θj−2πφ)2+2πilijφ]

=

�
Dθ

∑
{lij}

exp{−
∑
<i,j>

[
l2ij

2βJ
− ilij(θi − θj)]}

Since li,j is de�ned for each pair of 〈i, j〉, we could rewrite it as a vector potential lu(r),
(u = (x, y)), while r starts from the original point to the left or lower point in 〈i, j〉. Then
the exponent term becomes

−
∑
r,u

[
lu(r)

2

2βJ
− ilu(r) · (θ(r)− θ(r + u)]

Rewriting the second term lu(r) · (θ(r)− θ(r + u) as (lu(r)− lu(r − u)) · θ(r) makes it easy
to perform integral over θ. We obtain

Z =
∑
{lu(r)}

exp(−
∑
r,u

lu(r)
2

2βJ
)
∏
r

δ∑
u
(lu(r)−lu(r−u)),0

The constraint imposed by the delta function is∑
u

(lu(r)− lu(r − u)) = 0,

which is nothing but the discrete version of ∇~l = 0. That is to say, we can �nd a vector �eld
~n(r) satisfying ~l(r) = ∇ × ~n(r), where ~n(r) = ~ezn(r). In the discrete version, ∇ × ~n(r) =
(∂yn(r),−∂xn(r)) = (n(r)−n(r−y),−n(r)+n(r−x)), therefore, lu(r)

2 = (n(r)−n(r−u))2.
The partition function becomes

Z =
∑
{n(r)}

exp[− 1

2βJ

∑
r,µ

(n(r)− n(r − u))2]

Using Poisson's equation again, we have

Z =

� ∞
−∞

Dφ
∞∑

m=−∞
exp[− 1

2βJ

∑
r,µ

(n(r)− n(r − u))2 + 2πi
∑
r

m(r)φ(r)].
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By Fourier transformation to momentum space, we have

Z =

� ∞
−∞

Dφ
∞∑

m=−∞
exp{− 1

2βJ

�
dkφk[

∑
µ

(2− eikµ − e−ikµ)]φk + 2πm(−k)φ(k)}

= Zs.w
∞∑

m(r)=−∞
exp[2π2βJ

∑
r,r′

m(r)C(r − r′)m(r′)], (2)

where C(r − r′) = −
�

dkx
2π

� dky
2π

eik(r−r)

4−2 cos kx−2 cos ky →
1
2π

ln( |r−r
′|

a
) + 1

4
− G(0) for large |r − r′|.

The term with G(0) is G(0)[
∑
rm(r)]2. If we interpret m(r) as a �charge�, this term will

vanish due to the neutrality condition. The contribution from the constant also vanishes.
Zs.w is the contribution from spin wave part. It corresponds to the case where the

�uctuations between i and j are suppressed, i.e. m = 0. As a function of φ, it is hard to
transform Zs.w back to the presentation of θ. However, we could see easily that if θi − θj is
small, Eqn.(1) could be approximated as J

2

�
d2r(∇θ)2, so Zs.w = exp[−Jβ

2

�
d2r(∇θ)2].

2.2 XY Model and BKT transition

In this section, we will build up the bridge between XY model and a two-dimensional super-
�uid system. In the absence of vorticity, the velocity of this �ow can be written as ~v0 = ∇Φ.
The existence of vortex can be related to the vorticity ∇ × ~v. Notice that for any closed
path,

�
d~l · ~v =

�
d2r∇ × ~v · ~ez = 2πn, (n is an integer that re�ects the total topological

charges within that area.) One can set ∇× ~v = 2π~ez
∑
i niδ(r − ri), describing a collection

of vortices with topological charge {ni} at locations {ri}.
By setting ~v = ~v0 −∇× (~ezψ), we have

∇× ~v = ~ez∇2ψ ⇒ ∇2ψ = 2π
∑

niδ(r − ri).

The �eld ψ just behaves like a potential created by a set of point charges and the solution
for d = 2 is ψ(r) =

∑
i ni ln(|r − ri|) = 2π

∑
i niC(|r − ri|).

The action of this system can be written as

S =
β

2

�
d2rρs~v

2 = β
ρs
2

�
d2r[~v0 −∇× (~ezψ)]2

=
ρsβ

2

�
d2r[(∇Φ)2 − 2∇φ · ∇ × (~ezψ) + (∇× (~ezψ))2].

An integration by parts shows that the second term vanishes, while the third term
�
d2r(∇× (~ezψ))2 =

�
d2r(∂yψ,−∂xψ) · (∂yψ,−∂xψ) =

�
d2r[(∂yψ)2 + (−∂xψ)2]

= −
�
d2rψ∇2ψ = −4π2

∑
ij

ninjC(|ri − rj|)

The �nal expression for the action is

S =
ρsβ

2

�
d2r(∇Φ)2 − 2π2ρsβ

∑
ij

ninjC(|ri − rj|) ≡ Ss.w + St,
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which matches Eqn.(2) in previous section. It is clear that m(r) and J there represent
the topological charge and super�uid density ρs, respectively. Moreover, the unphysical
divergence at i = j can be regularized by the core energy of a vortex, hence St =

∑
i S

core
i −

4π2J
∑
i<j C(|ri − rj|).

2.3 Renormalization Group Approach

As we have seen, the partition function can be separated into two parts. In following discus-
sion, we will focus on the topological part, with only elementary excitations (i.e. ni = ±1).
Notice that the system behaves just like Coulomb gas in 2D, so the e�ect of screening must
be taken into consideration. To lowest order, the e�ective interaction between r and r′ can be
approximated by involving only two external �charges� (positioned at s and s′); it becomes〈
e−4π

2J̃C(r−r′)
〉
'

e−4π
2J̃C(r−r′) + y20

�
d2sd2s′e−4π

2J̃C(s−s′)−4π2J̃C(r−r′)+4π2J̃[C(r−s)+C(r′−s′)−C(r′−s)−C(r−s′)]

1 + y20
�
d2sd2s′e−4π2J̃C(r−r′)

' e−4π
2J̃C(r−r′)[1 + 16π5J̃2y20C(r − r′)

�
dxx3e−2πJ̃ln(x)]

' e−4π
2J̃C(r−r′)[1−4π3J̃2y20

�
dxx3−2πJ̃ ],

where J̃ = J/kBT and y0 = e−S
core
±1 . Then we obtain Seff (r − r′) = 4π2J̃effC(r − r′), where

J̃eff = J̃ − 4π3J̃2y20

�
dxx3−2πJ̃

The renormalization procedure is conducted by breaking this integral into two parts:�∞
a

=
� ela
a

+
�∞
ela
. The non-singular short-distance contribution can be evaluated and incor-

porated into J̃ . The remaining integral can be rescaled by ela→ a and reach the di�erential
recursion relations[2]:

dJ̃−1

dl
= 4π3a4y20 +O(y40)

dy0
dl

= (2− πL)y0 +O(y30)

The renormalization �ows are shown in Fig.(1). With J̃−1 ≤ π
2
, the low-temperature

phase is characterized by a line of �xed points where y0 → 0. It indicates that there is
no unbound vortices in this case. Here the correlation length decays as a power law, the

suppression of �uctuations leads to 〈cos(θ(r)− θ(0))〉 ' e−
1
2〈(θ(r)−θ(0))2〉 = (a

r
)1/2πJ∗ ∼ r−η,

with η = 1
2πJ∗ ≤ 1/4, indicating a quasi-long-range order. In the high-temperature phase,

y0 →∞ and J → 0, free vortices' pairs emerge. Correlation length decays exponentially:

〈cos(θ(r)− θ(0))〉 =
1

Z

N∏
i=1

(

� 2π

0

dθi
2π

) cos(θ(r)− θ(0))eJ̃
∑

i,j
cos(θi−θj)

' 1

Z

N∏
i=1

(

� 2π

0

dθi
2π

) cos(θ(r)− θ(0))
∏
i,j

[1 + J̃
∑
i,j

cos(θi − θj)]

∼ (
J

2
)r ∼ exp[−r

ξ
],

where the correlation length ξ−1 ≡ ln(2/J). ξ goes to zero under RG �ow.
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Figure 1: Schematic of RG �ow. The red curve indicates the line of �xed points below Tc.

2.4 Experimental Study on BKT Transition

In this section, BKT transition observed in cold bosonic atoms are discussed[3]. As shown
in Fig.2(a), two copies of 2D atomic cloud are prepared at the nodes of 1D optical lattice
potential. After the trapped 2D gases reach equilibrium, they are released. A camera records
the information about the matter wave interference between them (Fig.2(b)). The vertical
fringes are due to the interference of these two copies, while the waviness of the interference
fringes contains the information about the phase patterns in each planar system.

The temperature of the system is determined from the central contrast of the interference
pattern, which quanti�es the degeneracy of the 2D system and so the temperature. Higher
c0 re�ects lower temperature. Integrate the interference pattern along x and the resulting
contrast c will decay with the integration length. The average value of c2 should behave as[4]

〈
c2(Lx)

〉
≈ 1

Lx

� Lx

0

dx[C(x, 0)]2 ∝ (
1

Lx
)2α

Above critical temperature Tc, assuming correlation function C(x, 0) decays exponen-
tially on a length scale much shorter than Lx, the integral should be independent of Lx, i.e
〈c2(Lx)〉 ∼ 1

Lx
, so α = 0.5. Conversely, just below Tc, C ∝ x−

1
4 as shown in section 2.3, so

α equals to 0.25. Fig.2(c) demonstrates the change of α from 0.5 to 0.25 versus decreasing
temperature. Due to the �nite size e�ect, the transition occurs as a �nite-width crossover
rather than a sharp phase transition. Fig.2(d) proves the proliferation of free vortices at
higher temperature. The dislocations in the interference image is interpreted as vorteices,
whose number enhances with increasing temperature.

3 Quantum Criticality

Unlike thermally induced phase transition, quantum phase transition can take place at zero
temperature, driven by external parameters. Generally speaking, for arbitrary Hamiltonian,
its kinetic part H0 and potential part V do not commute and therefore e−βH 6= e−βH0e−βV ,
but for �nite β, we could have e−βH = [e−δτ(H0+V )]N ≈ [e−δτH0e−δτV ]N where δτ = β/N .
However, at zero-temperature, β →∞, the static and dynamic part are inextricably linked
and impossible to separate. Consequently, the d-dimensional quantum system behaves like
a d+1-dimensional classical system, with an extra degree of freedom comes from dynamics.
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Figure 2: Schematic of (a) the experimental preparation of 2D cloud of bosons and (b) imaging system.

After releasing from trap, the two clouds expand predominantly along z-axis and overlap to form a interference

patten. The camera records the pattern at x-z plane. (c) Emergence of quasi-long-range order in a 2D gas.

Dashed lines indicate the theoretical expected values of α above and just below Tc. Higher c0 corresponds

to lower temperature. (d) Proliferation of free vortices with increasing temperature. The sharp dislocations

in the inset are attributed to the presence of a free vortex. The �gure shows the number of vortices as a

function of c0.
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Figure 3: Schematic of (a) super�uid and (b) Mott insulator in an optical lattice. (c) and (d) are exper-

imental single-site �uorescence imaging of atom number for super�uid and Mott insulator. The bright dot

means the site is occupied by one atom, while black dot indicates that the site is either empty or occupied

by two atoms. (From Ref[5])

3.1 Introduction to Bose-Hubbard Model

The Hamiltonian of Bose-Hubbard model is

HBH = −J
∑
<i,j>

b̂†i b̂j +
∑
i

(εi − µ)n̂i +
∑
i

1

2
Un̂i(n̂i − 1),

where J is the hopping coe�cient that describes the tunneling of bosons between nearest
neighbour sites, U describes the on-site repulsive interaction between two particles, and
n̂i = b̂†i b̂i counts the number of bosons on i

th lattice site. For a homogenous system, εi is a
constant and therefore can be absorbed into the chemical potential µ.

Before doing any analytical calculation, we could consider two limit cases �rst. (1):
U/J � 1. In this case, each site should be occupied by an integer number which minimize

ε(n) = −µn+
1

2
Un(n− 1),

whose result shows that for n − 1 < µ/U < n, exactly n bosons will occupy each site.
The system is in Mott insulator state. (2): J/U � 1. The kinetic term dominates; atoms
are delocalized. It is super�uid and the ground state can be described by a macroscopic
wavefunction. The cartoons and real experimental images for these two phases are shown in
Fig.3.

To perform quantitative analysis, the partition function is represented by coherent path
integral in imaginary time:

Z =

�
DbiDb

†
i exp{−

� β

0

dτ [
∑
i

b†i (∂τ − u)bi +
U

2
b†ib
†
ibibi −

∑
i,j

Ji,j(b
†
ibj + b†jbi)]}. (3)

As a �rst step, we decouple the non-local hopping term by performing Hubbard-Stratanovich
transformation,

exp[

� β

0

dτ
∑
i,j

Ji,jb
†
ibj] =

�
Dψ exp{−

� β

0

dτ [
∑
i,j

ψ∗i J
−1
i,j ψj −

∑
<i,j>

(b†iψj + ψ∗i bj)]},
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Figure 4: (a) The phase diagram of Bose Hubbard model at T = 0. (b) Finite-temperature phase diagram

along the red line and (c) corresponding experimental data. ((a),(b) from Ref.[7], (c) from Ref.[8])

the partition function becomes

Z =

�
Dψ exp{

�
dτ

∑
ij

−J−1ij ψ∗iψj + log

〈
exp[

�
dτ

∑
i,j

(b†iψj + ψ∗i bj)]

〉
Sloc

}

where < ... >loc=
�
...e−

� β
0 dτ

∑
b†i (∂τ−u)bi+

U
2
b†i b
†
i bibi . Expand it to lowest order in powers of

hopping, we have〈
exp[−

�
dτ

∑
i,j

(b†iψj + ψ∗i bj)]

〉
Sloc

= 1 + ψ∗i
〈
T̂ b†i (τ)bi(0)

〉
ψi.

Recall that imaginary time Green's function equals to −
〈
T̂ b†i (τ)bi(0)

〉
. Converting it to

the frequency space by using Matsubara frequency ωn = 2πn/β, It becomes G(iωn) =
n0+1

iωn+µ−Un0
− n0

iωn+µ−U(n0−1) .
Re-exponentiate the resulting series in powers of ψ, and expand the terms in spatial and

temporal gradients of ψ, we have Landau free energy as[6]

L = K1ψ∂τψ +K2|∂τψ|2 +K3|∇ψ|2 + r|ψ|2 +
u

2
|ψ|4, (4)

where r = 1
ZJ

+G(0) and K1 = ∂r/∂µ. The phase transition happens when r changes sign,
this corresponds to

1

ZJ
− [

nMI + 1

UnMI(µ/U)− µ
+

nMI(µ/U)

µ− U(nMI(µ/U)− 1)
] = 0. (5)

where nMI is the occupation number of each site at Mott insulator state. The corresponding
zero-temperature phase diagram is shown in Fig.4(a).
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3.2 Universality Class of Quantum Phase Transition

In Fig.4(a), there are two kinds of quantum phase transition, each belongs to its own uni-
versality class. In the state of Mott insulator, the density is always pinned at some integer
number. As it undergoes a phase transition to the super�uid state, there are two possibilities:
either (1) the density remains the same, or (2) the transition is accompanied by a change in
density.

• Constant density. It happens as shown by the blue dash line in Fig.4(a), across
the Mott lobe's tip. At �xed chemical potential, su�ciently large hopping term will
allow particles to overcome the on-site repulsion and move around the whole system,
thereby the system transforms into a super�uid state. In this case, the parabolic shape
of phase boundary suggests that ∂r/∂µ = 0 at the critical point, so K1 = 0 in Eqn.(4),
and it is just a d = 2 + 1 XY model. (To see this, we could substitute b̂i = |√ρ0|eiφ
into HBH , and expand to quadratic order in φ, then HBH will go back to HXY ).

• Various density . Starting from any point in the µ−J plane, as the chemical potential
increases at �xed J , one will eventually reach a point where the kinetic energy gained
by adding another particle into the system will balance the cost of potential energy.
This extra particle can hop around the whole lattice without energy cost, producing a
super�uid state. In this case, K1 6= 0, so |∂τψ|2 becomes irrelevant.

Since the static and dynamic quantities are inextricably linked in the vicinity of zero tem-
perature, besides the conventional correlation length ξ, characteristic time Ω is necessary for
the scaling description; since we expect Ω diverges at the transition point, we have Ω ∼ ξz,
which de�nes the dynamical exponent z.

De�ne the reduced chemical potential as δ = µ−µc
J

. The �nite size scaling form for the
free energy density is

f(δ, β−1, L−1) = l−(d+z)f(δl1/ν , β−1lz, lL−1) = δν(d+z)f(β−1δ−νz, L−1δ−ν) (6)

Here we will �gure out the critical exponents through a simple argument. The mean �eld
theory predicts that ν = 1

2
, but how about dynamic exponent z? First, consider the constant

density transition occurred at the Mott lobe's tip. Since K1 = 0 in this case, Landau free
energy is isotropic for space and time, We expect that z = 1. The situation changes for
the various density case. The terms for spatial and temporal variance are ψ∂τψ ∼ ψ2

τ
and

(∇ψ)2 ∼ ψ2

r2
, respectively. Naive power counting implies that Ω ∼ ξ2, i.e, z = 2. More strict

argument can be found in Ref.[6].
However, the experimental observable is the super�uid density, we need to investigate its

behavior near the critical point, rather than the free energy. The density at the super�uid
side is ρs = −∂f

∂µ
∼ δν(d+z)−1F (β−1δ−νz, L−1δ−ν); it could also be written as

ρs ∼ δν(d+z)−1(β−1δ−νz)
ν(d+z)−1

νz F (β−1δ−νz, L−1δ−ν) ∼ β−
ν(d+z)−1

νz F̃ (δνzβ, Lδ) (7)
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Figure 5: (a) Collapsed occupation number as a function of the scaled chemical potential. The blue solid

line is the average curve for the lowest four temperatures. Inset shows the determination of critical chemical

potential from curves with di�erent temperatures. (b) Determination of the correlation length exponent ν

and dynamical exponent z, based on uc = 4.5J . The color represents the reduced chi-squared (χ2), indicating

how well the data can collapse into a single curve. (From Ref[8])

3.3 Observation of Quantum Criticality with Ultracold Atoms in

Optical Lattice

When it comes to the issue of realistic experiment, the �nite temperature e�ect deserves
more attention. Suppose that we reduce the chemical potential at �xed J (along the red
curve in Fig.4(a)), from Eqn.(6), we except a crossover region where δνz ∼ T , instead of a
critical point A. Fig.4(b) illustrates the �nite-temperature phase diagram and Fig.4(c) is
the corresponding experimental result.

The experimental measurement becomes promising, because the super�uid density can be
measured directly from in situ density distribution; the chemical potential µ and temperature
T are obtained by �tting momentum distribution based on mean-�eld model. The only
unknown parameter is the critical chemical potential µc. Eqn.(6) implies that if µ = µc,
δ = 0, the free energy density is independent of T . Hence, if we plot ρs(µ, T ) versus u for
di�erent T , all the curves should intersect at uc (as shown in the inset of Fig.5(a)).

The experiment[8] is based on 133Cs in two-dimensional optical lattice. The temperature
is controlled within the range of 5.8 to 31nK. From the crossing point in the inset of Fig.5(a),
the critical chemical potential µc is determined as µc = −4.5(6)t, which agrees with the
theoretical prediction µ0 = −4t derived from Eqn.(5).

On the basis of the expected exponents z = 2 and ν = 1
2
, Eqn.(7) becomes ρs/kBT ∼

F̃ [(µ− µc)/kBT ] for constant J . Fig.5(a) shows the scaled occupation number as a function
of scaled chemical potential. Below 15nK, they collapse into a single curve, demonstrating
the emergence of quantum criticality. Deviations become obvious for higher temperature.
Next, to examine the critical exponents, various values of z and ν are taken to check how
well the data can collapse to a single curve. The evaluation shows that the best-�t exponents
are determined as z = 2.2+1.0

−0.5 and ν = 0.52+0.09
−0.10(as shown in Fig.5(b)). They agree with our
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previous argument: z = 2 and ν = 1
2
.

4 Summary and Discussion

As a summary, in this paper, we �rst discussed BKT transition in terms of XY model,
and the RG analysis provides a deep view of this phenomena. Experimental results provide
not only a microscopic detection of BKT transition, but the critical exponents expected by
theoretical prediction. In the second part, we introduce the Bose-Hubbard model, which can
be emulated by optical lattice. A simple theoretical argument gives the scaling form and
critical exponents; and such quantum critical behavior has been observed experimentally.

For achieving further progress, one of the most challenging issues for cold gases system
is the di�culty to determine temperature. The cold atomic system is isolated from external
ensemble, so the lack of extrinsic thermometer preventing the conventional temperature
measurement. Nowadays, the information about temperature is obtained from intrinsic
properties of cold gases, e.g. by �tting the momentum distribution to a given theoretical
model, though the validity of the theoretical calculation deserves further investigation. This
di�culty becomes more obvious in strongly correlated problems. The lack of general theory
in this region prevents AMO researchers connecting what they observe to the quantities in
conventional condensed matter system. Therefore, �nding a convincing thermometer may
be the next important task for this area.
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