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I briefly review the critical phenomena in gravitational collapse with em-
phases on connections to critical phase transitions.

1 Introduction

It was well known that strong enough initial configurations of matter field
would result in gravitational collapse to black holes, whereas weak enough
initial data become dispersed to infinity. However, what happens in the in-
termediate region was not clear until the discovery of the critical phenomena
in gravitational collapse by Choptuik in 1993 [1]. He examined numerically
the spacetime evolution of massless scalar field minimally coupled to gravita-
tional field. The model studied is the simplest one so that numerical studies
are practical and accurate enough.

His discovery is remarkable. There’s three major phenomena. The first
is the mass scaling law in the resulting black hole mass M:

M ~ k(p —p.)” (1)

p is parameter in a one-parameter family of initial data which is varied to
give different initial conditions. While constant k and critical value p, de-
pend on the particular one-parameter family, exponent ~ is universal. The
second finding is universality. For a finite time in a finite region of space,
the spacetime generated by all initial data takes the same form as long as
they are close to the so called critical conditions. The commonly approached
solution is called the critical solution, and it has an amazing property, the
third phenomenon, called scale-echoing. In the model studied, the critical



solution is scale invariant by a factor e*:

0 (r,t) = du(e®r,et) (2)

where A ~ 3.44.

Following his work, a lot of other matter models were studied, and similar
critical phenomena were discovered. It is now clear that the critical phe-
nomena in gravitational collapse are common features in many gravitational
fields. The findings can be summarized as follows:

1. A and v are universal within a given field, but can be different for
different fields.

2. There are actually two types of critical phenomena: type I and type II,
named after analogy to critical phase transitions in statistical mechan-
ics. The type of critical phenomena is related to symmetry properties
of the critical solution. A critical solution with scale invariance (either
discontinuous self-similarity (DSS) or continuous self-similarity (CSS))
is related to type II critical phenomena, such as the case studied by
Choptuik [1], where the ’order parameter’ M is turned on continuously
at criticality. A critical solution with time periodicity instead of self-
similarity or scale invariance is related to type I phenomena where M
is always finite when a black hole is formed.

The research in this area involves many technical details. For the pur-
pose of this review, I'll only focus on the aspects related to critical phase
transitions, leaving out most details. I'll mainly follow the review work by
Gundlach [3] and Gunlach and Martin-Carcia [2], where one can find a quite
complete description of the area.

2 Numerical studies

Due to the complexity of Einstein’s field equations, most progress in the area
is achieved by numerical simulations. Even for computer simulations, most
work is done in the simplest cases: in most cases, spacetime with spherical
symmetry; in a few cases, spacetime with axisymmetry.



2.1 Choptuik’s study on spherically symmetric mass-
less scalar field

The governing equations are Einstein’s equations:

1
Gap = 87(Va Vb ¢ — 5 9ab Ve Vo) (3)

and scalar field equation:

VeV =0 (4)

The metric is chosen to be:

ds* = —a®(r, t)dt* + a*(r,t)dr* + r*dQ? (5)

Introducing the auxiliary variables

a
O =09, 1= a¢,t (6)

the wave equation (4) becomes:

cb,t = (aH),r (7>
meo= L0°%w), (®)

combined with the two Einstein equations:

L _om(P 4+ = 0 (9)

= 0 (10)

gives the equations that were numerically solved by Choptuik using finite-
difference techniques and an adaptive mesh-refinement algorithm. Choptuik
focused on one-parameter families of solutions by fixing the initial scalar
field configurations and varying only one variable in the initial data. For
example, one of the forms he studied is ¢ = @orieaxp(—[(r — ry)/d]?). The
one-parameter family can be from any one of the parameters ¢q, 1o, 9, q.
They control the strength of the initial field.
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What he found is that for p > p, corresponding to strong initial field, the
solution collapsed to a black hole after a long time; whereas for p < p,, the
scalar field dispersed to infinity and left over a flat spacetime. For initial data
close to critical parameter, all solutions spend a long time evolving very close
to the critical solution. Finally, some go to gravitational collapse to black
holes and others disperse away. There’s nothing special about the critical
point in that one can’t tell which near-critical solution would become black
hole or disperse to infinity. One has to fine-tune the parameter and wait for
long enough time to locate the critical point.

2.2 Studies on other matter fields

Numerical studies on many matter fields have been carried and similar criti-
cal phenomena are observed. Those fields include perfect fluid with pressure
proportional density, massive scalar field, massless scalar electrodynamics,
massive vector field, sigma model, SU(2) Yang-Mills, axisymmetric gravita-
tional waves, etc. Some fields show type II critical phenomena, while others
show type I critical phenomena, and some show a mix of type I and II phe-
nomena in different regions.

Most studies are restricted to spherical symmetry for numerical simplicity.
However, it’s important to know if the critical phenomena are generic in more
realistic fields, for example, fields with non-spherical symmetry and associ-
ated angular momentum. There’s some work on non-spherically perturba-
tions around spherically critical collapse using linear perturbation analysis.
But there’s still few numerical studies to verify the predictions. Recently,
there’s a numerical work by Olabarrieta et al. [5] on gravitational collapse of
a scalar field with angular momentum, but still in spherical symmetry. The
work is not directly related to realistic situation. Nevertheless, their results
are interesting and may shed some light on the critical collapse with angu-
lar momentum. They found both echoing exponents A; and mass-scaling
exponents ; decrease rapidly with increasing [, the eigenvalue of angular
momentum. They argued that the stability of critical solution increases with
increasing angular momentum, which is believed to be due to the momentum
potential barrier that helps stabilize the collapse to black hole formation.



3 Discussions on critical phenomena

3.1 Phase space picture

It is agreed that critical phenomena in gravitational collapse can be described
by ideas from dynamical systems. The universality of the critical solution
and critical exponent can be understood in terms of perturbations of critical
solutions. We can treat GR as an infinite-dimensional dynamical system.
The phase space is the set of all possible initial data. The numerical evidence
so far for one-parameter families suggests that the critical solution lies in a
hypersurface embedded in the phase space of smooth, asymptotically flat
initial data . The hypersurface is the basin of attraction of the critical fixed
point of codimension one. A one-parameter family that depends smoothly
on its parameter only crosses the hypersurface once. Any initial point that
starts in the critical surface never leaves it and would eventually evolve to
the critical fixed point. Thus the critical surface divides the phase space into
two parts. On one side, there’s a black hole fixed point and on the other,
a flat space fixed point. Initial parameter p = p, corresponds to a point in
the critical surface. Initial data with p > p, would eventually be attracted
to the black hole fixed point and data with p < p, would evolve into the flat
space fixed point.

Figure 1 illustrates the time evolution of spacetime solutions. For any
trajectory starting near the critical surface, it evolves almost parallel to the
surface towards the critical point. As it approaches the critical point, it slows
down and spend some time near the critical point. Eventually, it moves away
from the critical point towards an attracting fixed point depending on which
side of the critical surface it starts from.

This picture explains the origin of the universality. Any initial data set
that is close to the critical surface spends quite long time near the critical
surface and the critical point. When it finally evolves to the fixed point, it
appears to come from the critical point. All information in the initial data
is washed away during the evolution expect the initial distance, i.e. |p — p|
from the critical surface. This picture is very similar to the renormalization
group (RG) flow picture and implies connection to the RG transformation,
which is discussed briefly later. It’s worth noticing that the attractor in the
critical surface can also be a limit cycle corresponding to DSS. The qualitative
description is not affected by this difference.
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Figure 1: The phase space picture for the critical collapse. The arrow lines are
time evolutions of spacetimes. The line without an arrow is a one-parameter
family of initial data. Figure from Fig.1 of [3]

3.2 Linear perturbation of critical solution

Let’s now see how to quantitatively understand the critical phenomena, in
particular, calculate the critical exponent.

First consider type I critical phenomena. In type I critical phenomena,
the critical solution has time symmetry. For simplicity, consider a time in-
dependent critical solution. In the case of spherical symmetry with time
coordinate ¢ and radial coordinate r, it can be written as:

Z(t,r) = Zi(r) (11)

Linear perturbing the critical solution and keeping the only unstable mode
(there’s only one growing mode), we get the evolution of near-critical solution:
dCy

Z(r,t) = Z.(r) + Tp(p*)(p — pa)e" Zo(r) (12)



After long enough time, all the decaying modes die out. Define a period
t, during which the solution stays in the near-critical region:

aCy

o P Dl =e (13)

where € is an arbitrary small positive constant. The solution at ¢ = ¢, is
independent of |p— p.|, and so the final black hole mass if formed is expected
to be fixed, independent of |p — p,|. This can be understood according to the
picture described above: all trajectories that go into black hole fixed point
appear to come from the same point given by equation (12) at ¢ = ¢,. The
time scale during which the near-critical solution is close to critical solution
is:
1

ty, = )\Olog|p — p«| + const. (14)

This sets a mass scale in the problem. Hence, by dimension argument,
it’s reasonable to expect the black hole mass to turn on discontinuously from
zero with the magnitude determined by the mass scale in the problem. By
contrast, type II phenomena, which are scale-invariant, occur in situations
where either there’s no scale in the field equations or the scale is dynamically
irrelevant. Actually, in some cases where the importance of the scale varies
in different regions of initial data, one sees both types of phenomena.

Now let’s turn to the type II critical phenomena. It’s more convenient to
change coordinates to

t
r = —%,7’ = —log(—i),t < 0. (15)
The critical solution has the property, in terms of new coordinates
Z*<JZ,T+A> :Z*(J}7T) (16>

In the case of CSS, the critical solution is independent of 7. Let’s consider
the case of CSS first. Similar to the procedure in the discussion of type I
phenomena, one has

et

(p — p)e Zo(z) (17)



for 7 long enough. By defining the similar period as in type I discussion, 7,

we have
1

Ao

Again, we have the near critical solution at 7 = 7,:

T, = log|p — p«| + const. (18)

Z(x,1p) ~ Z.(x) £ €Zy(x) (19)

where the + sign is the sign of p—p,. In the original coordinates, the solution

looks like

r

L

r

Z(r,0) ~ Z.( .

) £ €Zo( ), L, = Le™™ (20)

p p

The intermediate data given by equation (20) depend on the initial data only
through L,. The field equations do not have an intrinsic scale. Since L, is
the only scale in the solution, which has the same unit as mass, we must have

1

M~ Ly ~ (p—p.)* (21)

One can easily read off the critical exponent v = 1/Xg. In the case of DSS,
the scaling law needs to be modified. A ’fine structure’ of small amplitude is
superimposed:

logM = ~log(p — p.) + ¢+ f(vlog(p — p.) + ¢) (22)

with f(2) = f(z+ A). The periodic function f is again universal and only ¢
depends on initial data.

3.3 Analogy to critical phase transitions and renormal-
ization group

The main features of critical phenomena discussed above are identified in
critical phase transitions in statistical mechanics. In particular, one noticed
that type Il phenomena occur with scaling law and critical exponent when
the critical solution has scale invariance. This is reminiscent of second order
phase transition in thermodynamical systems, such as liquid-gas transition
and spontaneous magnetization in a ferromagnetic material. In both systems,
at critical point, the correlation length diverges and physics in length scales
on microscopic levels, such as the atomic scale, become irrelevant at the
critical point. The scale invariance, that physics looks the same at different
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scales, is the origin of the universality of scaling behaviours in critical phase
transitions.

To calculate thermodynamical properties near critical point, one can
coarse-grain original physical systems and construct renormalization group
flows. The renormalization group can be considered as a dynamical system
and hence is analogous to the phase space picture in gravitational collapse.
Consider the ferromagnetic material in the absence of an external magnetic
field. The critical surface in this case is a hypersurface of codimension one
.(A point in this case with one dimension less than a line of temperature
T-axis). The renormalization group flows in this scenario is almost the same
as the time-evolution of one-parameter families in the phase space in critical
collapse. The calculation of mass scaling law of type II phenomena above
is just the calculation of critical exponent of correlation length. One then
identifies black hole mass M as correlation length &, and p—p, as T, —T. The
only difference here is that the RG flow goes towards larger scales and time
evolution is towards smaller scales. So ¢ diverges, while M vanishes at the
critical point. It’s interesting to note that if one brings in the external mag-
netic field B, then in some cases, the angular momentum L of the initial data
in gravitational collapse is the equivalent of B. The final angular momentum
of the black hole is the equivant of magnetization M. The analogy of type
IT phenomena with critical phase transition is extended to two parameters.

Due to the close connection of RG to the critical phenomena in gravi-
tational collapse, it’s natural to expect that the theory of RG may be used
to study the gravitational critical collapse. Hara et al. [4] carried a system-
atic RG study on perfect fluids and obtained accurate critical exponents in
agreement with numerical studies. However, to achieve a full RG in arbitrary
GR spacetimes is highly non-trivial. There has been little progress in this
direction.

3.4 Observations

Critical phenomena in gravitational collapse has applications to primordial
black hole formation. Results from analysis on critical gravitational collapse
may be compared to observations. Green and Liddle [6] compared results
from perturbation analysis by Niemeyer and Jedamzik to MACHO observa-
tions. Figure 2 shows the Niemeyer and Jedamzik PBH mass distribution
and mass distribution of the MACHOs from microlensing observations. The
PBH mass distribution is considerably broader than the observations. The



discrepancy may be due to lack of observation data. Further microlensing
searches may fit the broad spread of the PBH mass distribution.
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Figure 2: The solid line is the observed mass distribution of the MACHOs,
and the dashed line is the Niemeyer and Jedamzik mass function. Figure
from Fig.7 of [6]

4 Summary

Critical phenomena in gravitational collapse is a very rich area. Due to
the complexity of the Einstein’s field equations, most progress is made by
numerical simulations of rather simplified models. On the other hand, ideas
from phase transition can still shed some light on understanding physics
pictures underlying the phenomena. With further investigations on more
general matter models, on quantum effects on gravitational collapse, and on
many other issues, the analogy to phase transitions in statistical mechanics
would continue to help understand the physics.
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