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Abstract 

There has been a high interest in studying the collective behavior of 

organisms in recent years.  When the density of living systems is increased, 

a phase transition from a disordered state into an ordered state occurs: i.e. 

units, which move in random directions below the transition, move together 

in the approximately same manner or direction.  Several models and 

experiments are reviewed in this essay.  



1. Introduction 
 
A high interest in studying the collective behavior of organisms has been raised in recent 
years.  When the density of living systems is increased, a phase transition from a 
disordered state into an ordered state occurs – units, which move in random directions 
below the transition, move together in the approximately same manner or direction (Fig. 
1).  
 

 
 
 
 
 
This collective motion emerges at all sizes, from cells to whales.  Several assumptions 
based on evolutionary functions are proposed to explain why organisms tend to behave 
similarly, such as increasing survivorship, mating, food finding, etc. [Parrish et al., 1999]. 
Besides evolutionary assumptions, several models based on self-propelled particles have 
been developed.  Also, a few experiments were successfully carried out under laboratory 
conditions recently.  Models and experiments are reviewed in the following sections.  
 

2. Models and simulations 

Fig.1. Fish schools [Photo: Norbert Wu, 1999] 



The self-propelled particle models proposed in about last 10 years mainly fall into two 
categories: one is assuming the particles have simple short-range interaction with some 
random noise, and the other one employs more complicated interactions. 
 
2.1 Simple short-range interaction with noise added 
Vicsek et al. introduced their model in 1995 with a simple rule that particles were 
propelled with a constant absolute velocity and the average direction of motion in a 
particle’s neighborhood was assumed at each time step with some random noise added 
[vicsek et al.1995].  In simulations, Vicsek et al. assumed that N particles were 
randomly distributed in a square shaped cell at initial time (t = 0), and they had the same 
absolute velocity v and random distribution of velocity directions θ.  The position of the 
ith particle is 

( ) ( ) ( ) ,i i ix t t x t v t t+ Δ = + Δ                        (1) 

where the simultaneous velocity ( )iv t  was determined at each step and tΔ  was time 

step.  ( )iv t t+ Δ  here has an absolute value v, and a direction given by θ(t+Δt) which is 

determined by 

                         ( ) ( ) ,rt t tθ θ θ+ Δ =< > +Δ                         (2) 

where <θ(t)>r was the average direction of particles within a circle of radius r (interaction 
range) surrounding a particular particle, and Δθ, presenting noise, was a random number 
chosen in the interval [-η/2, η/2 ].  Figure 2 (a - d) shows the velocity field with various 
noise parameters η and density ρ= N / L.  Fig. 2(d) with high density and low noise 
demonstrates the most interesting result – most particles have ordered motion in 
approximately the same direction.  The absolute value of the average normalized 
velocity was also determined and taken as an order parameter 
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When the velocity of particles was randomly distributed initially va = 0, and when the 
motion of all the particles became ordered va = 1.  Figure 3 (a) demonstrates va as a 
function of η at fixed density ρ with different sample size N, and figure 3(b) shows 
behavior of va as density ρ changes at fixed noise η. 
 



 
 

    
 
 
 
 
Since the behavior of va is similar to that of the order parameter in equilibrium systems, 
Vicsek et al. assumed that this kinetic phase transition was analogous to the phase 
transition in equilibrium systems, 

[ ]~ ( ) ,a cv βη ρ η−  and [ ]~ ( )a cv δρ ρ η−                  (4) 

where ηc(ρ) and ρc(η) are critical points.  β = 0.45±0.07 and δ = 0.35±0.06 were obtained 

by linearly fitting data in plot of dependence of ln va on ln([ ( ) ] / ( ))c cL Lη η η−  and 

[ ]ln( ( ) / ( ))c cL Lρ ρ ρ−  shown in figure 4. 

Fig. 2  Velocity field with 
different noise parameters η 
and density ρ.  N = 300 in 
each case.  (a) t = 0, L = 7, 
η =2.0.  (b) L = 25, η = 
0.1.  (c) L = 7, η = 2.0.  
(d) L = 5, η = 0.1 

Fig. 3  (a) the average normalized velocity as a function of noise.  (b) the 
average normalized velocity as a function of density 



  
 
 
 
 
 
 
Gregoire et al. [Gregoire et al., 2003] proposed a minimal model in 2003 extending 
Vicsek’s model by taking the possible cohesion of particles into account.  
 
2.2 Noise-induced transition 
Erdmann et al. [Erdmann, 2005] proposed a model with an attractive parabolic attracting 
pair potential between self-driven particles.  Noise effect was especially investigated on 
the systems.  The motion of N particles was given by the following equation: 
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where iF  is chosen in the form of 2(1 )i i iF v v= −  depending on the velocity of particles, 

and iξ  is stochastic white forces with strength D independent for different particles: 

( ) 0,i tξ< >=  ( ) ( ) 2 ( ) .i j ijt t D t tξ ξ δ δ′ ′< >= −   In simulation, all particles had identical 

positions as well as velocities at t = 0, and noise was introduced at time t = 30.  Since 
the swarm of particles was not isotropic, mean-square dispersion, parallel and orthogonal 

to the direction of its instantaneous mean velocity (1/ ) ( )ii
V N v t= ∑ , was monitored: 

Fig. 4  (a) dependence of ln va on ln([ ( ) ] / ( ))c cL Lη η η−   

      (b) dependence of ln va on [ ]ln( ( ) / ( ))c cL Lρ ρ ρ−  
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where R  is the center of mass of the cloud of particles.  Figure 5 demonstrates 

dependence of the mean velocity of swarm on the noise intensity D.  A sharp transition 

was found at 0.067 < D < 0.070, where | |V  dropped dramatically to a small number.  

Figure 6 shows the behavior of longitudinal and transverse dispersions as noise increases.   

It indicates ||( ) ( )S t S t⊥  until the intensity of noise D approaches its critical point, 

which means the swarm of particles is strongly squeezed in the direction of mean velocity, 
and after the transition the longitudinal dispersion approaches the transverse dispersion 
for a strong noise.  Figure 6 gives the sequential snapshots showing how translational 
motion is transferred to rotational mode. 

 
 

 
Fig. 5  Mean velocity of swarm as a function of noise intensity. 



 
 
 
 

 

Fig. 6  Time snapshots of a swarm with noise intensity D = 0.070 



3. Experiments 
Although there are a huge number of examples of collective motion observed in nature, 
only a few experiments were carried out in the laboratory conditions.  Becco et al. 
[Becco, 2006] presented such an experiment on fish schools by tracking the motion of 
every young tilapia fish.  A thin container (40cm × 30cm × 2cm) with water was used, 
thus the motion of fish could be considered as in two dimensions.  The container was 
illustrated by a homogeneous light source and the motion of fish was recorded by a CCD 
camera below the container.  Figure 7 shows two typical trajectories of all fish for 
different fish densities (fish per m2).   

 
 
 
 
The nearest neighbor distance D was computed and found to be distributed obeying a 
lognormal law: 
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where μ is a scale parameter and S is the shape parameter.  Then the position of the 
maximum in the distribution D1 was calculated.  The dependence of D1 on the fish 
density ρ is illustrated in figure 8, showing a sharp transition at a critical density ρc.  The 
behavior of D1(ρ) was fitted with a empirical law: 
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where a1 is a fitting parameter.  The fitting gives ρc =527±126 f / m2 , D1,∞ = 1.21±0.17 
cm and exponent α = 0.7±0.3.  Correlations between different fish velocities were also 
measured.  The correlation between speeds of neighboring fish was found to be very 

Fig. 7  Left: the trajectories of 20 fish with fish density 350 f/m2.  Right: the 
trajectories of 20 fish with fish density 905 f/m2 



weak, but the correlation between relative orientations of neighboring fish was strong.  
Figure 9 shows the distribution of the relative orientation θnn defined as the relative angle 
between velocities of neighboring fish.  An exponential fit was used to find the width σ 
of the distribution.  Then the cooperativeness was measured by the inverse of the width 
σ -1 and plotted in figure 10 as a function of fish density.  Another empirical law was 
applied to fit the curve: 
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where a3 and b2 are fitting parameters.  ρc = 472±38 f/m2 and β = 0.7±0.3 were obtained 
by fitting. 
 

 
 
 
 
 
B. Szabo et al. [B. Szabo et al.,2006] presented a better controlled experiment in 2006 
using tissue cells.  A computer-controlled time-lapse microscope was used to monitor 
the motion of cells, which is presented in figure 10 for three different densities.  In high 
density case, cells show ordered motion.  The order parameter was chosen to be time 
average of the sum of the normalized velocities divided by the number N of cells 
measured: 
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where tk is the time elapsed.  Figure 11 shows the order parameter as a function of 
normalized cell density indicating a sharp phase transition occurs as the normalized cell 
density increases.  This experiment was also interpreted by the model proposed by 

Fig. 8  The most probable interdistance D1 as 
a function of fish density. 

Fig. 9 Dependence of cooperativeness on 
fish density.  



Vicsek et al.. 
 

 
 
 
 
 

 

Fig. 10  Motion of cells for three different densities.  (a) 1.8 cells/100×100μm2.  
(b) 5.3 cells/100×100μm2.  (c) 14.7 cells/100×100μm2. 

Fig. 11  Dependence of order parameter on normalized cell density. 



4. Conclusion 
Several models were established for collective motion of organisms.  Computational 
simulations in these models were also performed, which gave the theoretical evidence of 
collective behavior, and were used to interpret experimental observations.  However, the 
lack of experiments under laboratory conditions limits a better understanding of this vital 
phenomenon.  How to perform better experiments which can be analyzed quantitatively 
is a key point. 
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