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Abstract 
Social phenomena can exhibit drastic changes with 
small changes in external parameters––phase 
transitions.  Furthermore, physical models can be 
applied to social systems because most of the small 
details can be ignored just as in physical systems.  
Many models have been used and developed, most 
notable network models.  However empirical data 
and their interpretation are not yet good enough to 
make definitive judgments about the validity of 
these models.  This is a good direction for further 
research. 



Introduction 
 
 A social system is an interacting group of actors that have complex 
individual behavior.  Although animals and their behavior can form social 
systems, this paper will only look at human social systems.  Everyone is aware of 
several examples of social systems around him, from groups of friends, 
employees of the same company, members of the same organization, or citizens 
of the same country, as well as many others.  In each of these systems, and as a 
general property of social systems, not only do the actors influence each other, but 
there is usually also a source of outside influence on them.   
 Social systems usually react gradually to gradual changes in external 
forces, but as in physical systems, there also can be phase transitions in which the 
behavior of the individual actors, taken collectively, exhibits a dramatic change 
with a small or even immeasurable change in external conditions [1].  Political 
revolutions are a good example of this phenomenon, where a large fraction of the 
population changes from apparent support to protest within a short period of time, 
and for reasons that may have seemed rather insignificant before the revolution.   
 Such problems are interesting to physicists because their methods, which 
are successful in studying phase transitions of physical phenomena, turn out to be 
very useful for modeling social systems as well.  While it was once scandalous to 
represent complex human beings by a simple model such as Ising spins, these 
models are useful because with large systems the individual behaviors become 
unimportant compared to the collective behavior, and this is true both for physical 
systems and social systems.  In actuality, the physical systems modeled by simple 
Ising models are already substantial simplifications of the true microscopic 
behavior, so even averaging out nearly all the complexities of human behavior in 
simple model is actually quite reasonable. 
 
Models 
 
 Unlike physical systems, however, social systems can not be easily 
experimented on, so one must rely on observational data such as surveys.  Since 
the usual timescale of social behaviors is on the order of months, it is difficult to 
collect a significant amount of statistics.  Finally, because of the great complexity 
of the human constituents of social systems, there is potential for many competing 
explanations.  These reasons were all given in [2].   
 This creates a lack of compelling numerical data, which causes the 
theorists to depend on qualitative descriptions to motivate their models, though 
observational evidence is also given.  This also means that there exist many 
models for the same kind of phenomenon, each with its own set of assumptions 



and complications.  This paper will summarize and review the major types of 
model used in the literature for social phase transitions. 
 
Mean Field Theory 
 
 The first type of model consists of models based on mean field theory.  
Two nearly equivalent models are represented well by two papers:  one by Levy 
[1] and one by Durlauf [3].  In Durlauf’s model, actors interact with each other 
and an external field.  Each actor’s choice in a particular issue is determined by a 
utility function which is determined by a set of interaction coefficients between 
this actor and all others as well as between the actor and the external field.  Each 
actor also has internal, in the sense that they are not visible to an experimenter, 
degrees of freedom.  While being honest enough to show this, the author quickly 
shoves this issue under the rug through the assumption that these internal degrees 
of freedom are logistically distributed.  Then the model is made tractable through 
the assumption that the actors are completely rational in their decision making.  
This is a classic economics assumption, though it is not clear that this assumption 
is justified.  His model actually allows for each interaction coefficient to be 
different, but to do any calculations, he takes the coefficients to all be constant.  
This is equivalent to the Curie-Weiss model of ferromagnetism because each 
actor interacts equally with every other actor.   
 In Levy’s model [1], the results are similar, but the method is different.  
Levy also makes a distinction between observable and unobservable factors.  The 
difference between his and the previous model is that this one takes the variable x, 
the mean value of choice of a system, as a special variable.  For a high enough x, 
most people will eventually cave in due to peer pressure.  Each person has his 
own threshold x, which leads to a distribution of thresholds.  This distribution of 
thresholds can be gaussian, so as to recover the Curie-Weiss model, or have some 
other shape.  The model produces graphs like this. 
 



 
Fig 1. Fraction willing to choose in light of seeing x fraction actually choosing [1] 

 
Fig 2. Shift in F(x) due to external forces and the appearance of a new fixed point. 

[1] 
 

F(x) is the fraction of people that would make a certain choice given the fraction x 
that have already made the choice.  The places where this curve crosses the 45 
degree diagonal line are fixed points because F(x) = x.  It is clear that with a 
different curve F(x), a different distribution of thresholds x, that there could exist 
more than one fixed point.  As in the Curie-Weiss model, for three fixed points, 



the outer two would be stable, but the central one would be unstable, directing 
anyone upwards or downwards.  With more than one fixed point, we have the 
possibility of phase transitions between the multiple equilibria.  Which fixed point 
is the actual equilibrium will depend on the exact utility function at the time of 
measurement.   
 The main conclusion of Levy’s was that the relative wideness or 
narrowness of the distribution of threshold is what determined how radical a 
phase transition was going to be.  The narrower the distribution, the more radical 
the change will be.  This makes sense because if all the actors had the same 
threshold x, then the whole population would change at once if the threshold 
could be reached.  And on the other hand, a wide distribution of the threshold x, 
meaning that there are people who will not say yes no matter how many others do, 
and some people that will say yes no matter who does not, leads to a gradual 
change.   
 The merits of this model are that it quickly produces the qualitative 
behavior of phase transitions in a model which is quite intuitive.  Not only can 
this model qualitatively produce the phenomenon that a minority can have a quick 
revolution, but also that sometimes promising revolutions are defeated [1].  One 
weakness to this theory is that it is a mean field theory, so that each actor feels the 
opinions of all others, and feels them all with equal strength.  This is clearly not 
correct, though it could be sufficient.  Another more important weakness is that 
Levy provides no good suggestion on how to determine the effects of external 
factors, like a government policy, affect the distribution of thresholds.  Levy 
shows the graph F(x) simply being slid up and down as one of the other 
parameters changing.  This is equivalent to every actor having his preferences 
shifted by the same amount.  Since an individual’s threshold is a complex 
function of parameters, the response to an external change could distort the shape 
of F(x) as well as shifting it.   
 
Majority Rule 
 
 Another simple model is a majority-rule system.  Papers by Galam [4] are 
good examples of this method.  The basic idea is to use a real space 
renormalization group procedure to evaluate larger and larger groups of actors, 
thereby allowing them to influence one another through the majority rule process.  
In this paper, the actors are divided into groups of four.  After one round of 
renormalization, each group becomes one with the value dependent on the 
majority present.  If there is a tie, then the result can go to the incumbent.  This 
leads to the requirement that an opposition have approximately %77 of the total 
population in support or the incumbents will stay in power.   



 The advantages with this model are that it is a clean application of 
renormalization group theory to a simple model.  The model itself, however, is 
not very realistic.  It requires a hierarchical structure and supposes assimilation of 
ideas through a process of majority-rule voting.  This may be a reasonable model 
for a small number of political systems, but probably not for most social systems.  
Galam believes, however, that the applicability of this model is much wider than 
the assumptions would suggest, because the model can be tuned to duplicate the 
results of other models [5].  In that case, perhaps the attention to get the details 
more correct in the other models was only a waste. 
 
Network Models 
 
 Mean field theory models are not quite correct because it is clear that not 
everyone should have equal influence on a particular person.  The majority-rules 
systems likewise differ from common sense how actors influence one another.  
Intuition says that actors only influence one another if they have contact with one 
another.  In an effort to more realistically model social systems, the science of 
networks became hotly studied.  There are a plethora of different networks, each 
having its own strong and weak points.  [6] is an excellent introduction to the use 
of networks in social systems, and much of this section comes from that. 
 
Random Networks 
 
 Random networks were the first to be studied by mathematicians, and 
there is extensive study done on them, but they are poor models for a social 
system.  Social systems exhibit clustering because of homophily, which means 
that like tends to attract like, so that many similar individuals would be linked 
together. 
 
Lattice Networks 
 
 Some papers model social systems on a plain lattice, often 2D.  [7] is an 
example.  This paper discusses the formation of a group of followers around a 
strong leader, and the conditions on the group such that the strong leader and his 
followers could become the majority opinion.   
 
Small-World Networks 
 
 A step up in complexity is called the small-world network.  It consists of a 
lattice with nearest neighbors and maybe next nearest neighbors connected.  A 
few of the edges, however, are then rewired to a different random node.  This 



keeps the ordered nature of the network, while the long-range connections reduce 
the effective size of the network, because a person could find another by only 
traveling through a few steps.   
 

 
Fig 3. (a) Small-world networks, (b) Clustering and path length vs small-world 

randomness parameter p [6] 
 

The figure shows small-world networks with a different number of random 
connections.  The graph shows that small-world networks are both highly 
clustered and have low average shortest path length.  Both those features are 
important features of real social networks. 
 Small-world networks are built up from a lattice which is then modified.  
However, it is possible to create networks with those two properties without 
starting with a lattice, which would seem to be a better starting point.  Such 
networks are called affiliation networks because they are created by linking 
individuals to a number of groups.  Then two individuals are considered to be in 
contact if they belong to the same group.   
 
Scale-Free Networks 
 

Another important feature of real social networks is that there exist a few 
individuals with many contacts while most others have only a few.  The 
probability of finding a node with degree k is well described by a power law  

 



P(k) ~ k –α  
 

On a log-log plot, a power law is a straight line, but a Gaussian distribution would 
have a curve to a sharp cutoff.  See the figure below. 
 

 
Fig 4. Log-log plots for P vs k (a) power law, (b) gaussian distribution 

 
The lack of any special length scale for a cutoff for the power-law graph, while 
the gaussian graph certainly has one, is what gives networks that obey this law the 
name scale-free networks.  This scale-free behavior has been found 
experimentally in dozens of networks as listed in [6].  Some examples are genetic 
regulatory networks, neural networks, collaboration networks of scientists, and 
the link structure of the world wide web.   
 
Future Directions 
 
 What is currently lacking right now in this area is some hard numerical 
data that can be used to critically test models.  While it is true that much progress 
has been made in the way of developing and studying networks, even to the point 
that there are algorithms to create networks with custom properties [8], I think this 
progress with networks has served to distract many from the problems yet 
unsolved.  Just as mean field models, that completely ignore network topology, 
are mere qualitative descriptors, models that focus solely on the network topology 
can miss the fact that a network, even an exactly correct one, needs a good 
interpretation for it to be of use.  As Barthélemy says, “purely topological models 
are inadequate and there is a need for a model which goes beyond pure topology” 
[9].   



 I also believe that Roehner [10] has laid out an interesting path by 
proposing a close analogy between the liquid state and properties of socio-
economic systems.  In particular, that what the field really needs is a good way to 
study and measure the interaction strengths in social systems.  Of course it is 
nearly impossible to simply measure interaction strengths directly like physicists 
and chemists can using IR spectroscopy and the like, but other aggregate 
quantities could be taken as indicators of interaction strength.  In his paper, he 
uses suicide rate as an indicator of the degree of social isolation present in certain 
groups.  While certainly only a small minority of people commit suicide, the ones 
that do reveal the existence of extreme social isolation in that society, though 
probably mostly on the tail of a distribution of social isolation.   
 Therefore, the direction I feel is most needed for this field is for there to be 
a two-pronged attack aimed at making models empirically testable.  One prong is 
to develop better experimental techniques to measure more accurately social 
variables, and the other is to research the connection between fundamental 
coupling constants and aggregate variables.   
 
Conclusion 
 
 The field of social phase transitions has had quite a bit of study.  Many 
models have been developed, and network models have been especially fruitful 
for research.  However, the gap is still not closed between experiment and theory 
because the data are both hard to take and hard to interpret.  I propose that closing 
this gap should be a priority for the field. 
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