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Abstract

Jamming phenomena arise in many systems. Granular materials, glasses and colloidal sys-

tems are just a few examples of it. This paper summerizes current effort of unifying these

phenomena into a single jamming phase transition. Two examples, granular materials and

colloidal suspensions, are discussed in detail to illusrate the idea. The strengths and weak-

nesses of this picture are addressed at the end of the paper.

1 Introduction

Glass forms when a liquid is quenched into a solid phase[1]. Granular materials jam when

the average density is higher than a critical value[2, 3, 4, 5]. Colloids aggegrate and form

rigid structures when temperature is lower than the critical temperature[6, 7, 8]. All these

phenomena are characterized by the fact that some sort of rigidity emerges when a physi-

cal parameter goes below its critical value, due to some kind of local interaction. Similar

phenomena also arise in systems of weakly attractive particles[9, 10], foams[11, 12] and con-

centrated emulsions[13, 14]. Despite these physical systems are of very different nature, they

exhibit a similar transition. We call this transition between a liquid state with zero rigidity

(shear modulus for granular material) and a disordered jammed state with non-zero rigidity

the jamming transition. In the light of universality, two natural questions arise: Are the

underlying dynamics of these systems universal? Can we describe them by a minimal model

capturing the essence of the dynamics?

While such a minimal model is still lacking in the field, the notion of a jamming phase

diagram is introduced by Liu and Nagel[15]. The idea is to construct a phase diagram of

two states - jammed and unjammed - using three physical parameters: density, temperature

and load. A schematic diagram is shown in Figure 1. The jammed phase near the origin

is bounded by the depicted surface. The choice of these particular axises are movitated
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by the dynamics in different systems. For granular materials, the dynamics is essentially

athermal, so temperature is not important. But because a large density can jam the system

while a high shear stress can make the material flow, the density and load (shear stress

in this case) are revelent to the jamming transition. Thus the two axises. The third axis,

temperature, is easy to understand as thermal effect is important in jamming transition in

colloid suspensions, for example.

Note that this phase diagram describes non-equilibrium phenomena because the load is

tied to dynamics. The state of the system, specified by its configuration, is not enough to

dictate weather the system jams. The load must be specified to give a complete description.

This is different from equilibrium statistical mechanics.

The goal of this paper is to summerize the current development on the topic. We will dis-

cuss two systems, namely frictionless granular materials and colloid suspensions, to illusrate

that the jamming phase diagram indeed unifies the description of these two systems.

Figure 1: A schematic jamming phase diagram. The jammed phase near the origin is

bounded by the depicted surface.
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2 Weakly attractive colloidal particles

Trappe et al. [9] were one of the first reseachers to put the idea of a unified jamming phase

diagram to an experimental test. They considered attractive colloidal particles, and treated

the suspending fluid as an inert background. For this system, the density is set explicitly

by the particle volume fraction, φ. The degree of thermalization is control by the parameter

kBT/U where U is the interparticle attractive energy. And the stress, σ is measured in units

of σ ≡ kBT/a
3 where a is the radius of colloidal particles.

To examine the generality of the concept, they used three colloid systems - carbon black,

polymethylmethacrylate (PMMA), and polystyrene. For all these systems, a highly dis-

persed, fluid phase of particles is transformed into a jammed solid with increasing φ, increas-

ing U , or decreasing σ.

For carbon black, a well-defined transition from fluid-like to solid-like structure is obtained

by either increasing φ or U . The elastic modulus, G′

p, goes to zero when unjammed, while

the viscosity, η diverges when the system jams. These results are shown in Figure 2.

Figure 2: Control parameters for the jamming transition. On the left are the optical micro-

graphs showing the jamming transition for carbon black by (a) increasing φ, (b) increasing

U and (c) decreasing σ. As can be seen in (a) and (b), the viscosity, η, diverges as the system

jams and the elastic modulus, G′

p goes to zero as the system unjams. (c) shows the phase

boundaries bewteen jammed and unjammed phases for different values of stress σ, φ and U .
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The data shown in Figure 2 can be fitted using power law functions

η = ηs(φc − φ)−νφ (1)

and

G′

p = G′

φ(φ− φc)
vφ (2)

where νφ = 0.13 and vφ = 4.0 are fitted. ηs, G
′

φ and φc depend on U . Similar power law can

be written in terms of U :

η = ηD(Uc − U)−νU (3)

and

G′

p = G′

U(U − Uc)
vU (4)

where again νU = 0.13 and vU = 4.0 are fitted. ηD, G′

U and Uc depends on φ. The power law

behavior reminds us about critical phenomena in equilibrium critical phenomena; however

no rigorous connection is made because this is a non-equilibrium transition.

For any jammed configuration, if we increase the stress indefinely, at some point the

system will be unjammed. This defines the yield stress, σy, which is the phase boundary.

From the experimental data, Troppe et al. found a remarkable power law behavior of σy:

σy = σφ(φ− φc)
µφ (5)

and

σy = σU (U − Uc)
µU (6)

where µφ = 3.4 and µU = 2.4 are fitted. These reults are shown in Figure 2. The phase

diagram can be constructed from these results and is shown in Figure 3. Note that the cur-

vature of the phase boundaries are different from the original proposal by Liu and Nagel[15].

Note also that there is no reason to expect the phase boundaries to follow a power law.

Similar scaling behaviors are found in PMMA and polystyrene, but the exponents are

different. This feature is a clear sign that this transition is not a conventional equilibrium

phase transitions. And special care has to be taken when we discuss the universality of

the transition. We will see in the next section that the systems of frictionless particles

bear the same feature, namely the exponents depends on the interaction potential, but not

4



Figure 3: The jamming phase diagram for carbon black.

on dimensionality. How do we apply our knowledge of renormalization group and critical

phenomena to these systems is still an open question.

The same relation between σ and φ is also found in mixture of oil and silica particles[16],

supporting the idea of jamming phase diagram as a unified picture.

3 Systems of Frictionless Particles

As the first advocate of the jamming phase diagram, Nagel’s group has studied jamming of

frictionless particles at zero temperature and zero applied stress[3]. They used molecular

dynamics simulation to simulate frictionless particles in a box, with interacting potential

V (rij) = Θ(σij − rij)ǫ(1 − rij/σij)
α/α, (7)

where Θ(x) is the Heaviside step function, rij is the inter-particle distances, σij is the sum of

the particle radii, ǫ sets the energy scale and α is a parameter specifying the interaction. In

particular, α = 3/2, 2, 5/2 are chosen in their work. Simulations are done in both two and

three dimensions, for both monodisperse and bidisperse systems. Because of the Heaviside

step function, the particles only repel each other when they are overlapped. A sufficiently

large value of ǫ was chosen to avoid large deformation of the particle sizes. All these settings

are chosen to simulate systems of granular materials.

5



Technically, the definition of the jamming transition given earlier is not shape. Given a

however small shear stress, all configurations will eventually flow, depending on the time scale

of the experiments. So the jamming surface depicted in Figure 3 is typically not sharp. To

make things precise, it is better to consider zero temperature and zero applied shear stress.

The transition is then only controlled by the density of the system. Studies show that the

transition in this case is sharp and well-defined in the limit of infinite system size[2, 3]. The

critical point at zero temperature and zero shear stress is called the point J, which stands

for jamming(figure 3).

The physical meaning of the transition at point J is clear. At low density, the particles do

not see each other and any small applied shear stress will move the particles. As the density

is increased, the particles get closer and closer to each other. They are then ’maximally

packed’ at some critical density, meaning no particle can move independently with respect

to the rest of the system. The system jams. And a nonzero yield stress emerged. This simple

pictures shines light on the relation between jamming transition at zero temperature and the

problem of random close packing[17, 18]. Indeed, the critical value φc = 0.639 ± 0.001[2, 3]

is found to be very close to the random close packing density φrcp = 0.64[17, 18]. This

relation implies the jamming transition at zero temperature and zero applied shear stress is

controlled by the geometry of packing.

3.1 Critical scaling

Power law behaviors are observed near point J for various physical quantities, including

pressure p, static shear modulus G∞, coordination number Z − Zc, where Zc is the coordi-

nation number at φ = φ+
c and the height, g(r0) and width, s, of the first peak of the radial

distribution function g(r). They are plotted in figures 4 and 5.

A remarkable point to note is the critical exponents for pressure and static shear modulus

do not depend on dimensionality, but on α. This means that the exponents depend on the

microsopic interaction potential between particles. And if we write

p = p0(φ− φc)
ψ and G∞ = G0

∞
(φ− φc)

γ , (8)
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(a) Pressure. The up-

per(lower) line has slope of

1.0(1.5).

(b) Static shear modulus.

The upper(lower) line has

slope of 0.5(1.0).

(c) Coordination number.

The slope is 0.50 for both

lines.

Figure 4: Power law behaviors of various physical quantities below point J. For α = 2 (har-

monic repulsions), the symbols are 3D monodisperse (circles), 3D bidisperse (diamonds), 2D

bidisperse (leftward triangles). For α = 5/2 (Hertzian potential), they are 3D monodisperse

(squares), 3D bidisperse (upward triangles) and 2D bidisperse (download triangles).

(a) The radial distribution

function g(r).

(b) The height, g(r0), of the

first peak of g(r). The slope

of the solid line is -1.

(c) The width, s, of the first

peak of g(r). The slope of the

solid line is 1.

Figure 5: Power law behaviors of the height and width of the first peak of the radial distri-

bution function g(r) for a N = 1024 monodisperse system with harmonic repulsions in 3D

at φ− φ− c = 0.1 and 0.001.
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it is not difficult to note the relations

ψ = α− 1 and γ = α− 3/2, (9)

independent of dimensionality or polydispersity. This is different from what we expect and

this posts questions about the universality of the underlying dynamics. The physical meaning

of equation (9) is explained in ref. [3] and is not revelent to our current discussion.

The coordination number jumps from zero to some non-zero value Zc discontinuously at

point J. This can be understood as follows. For φ < φc, the system is dilute and there is

no contact between the particles on average. At the onset of jamming, φ = φc, the system

achieve a random close packing and every particle is in contact with some other particles.

Thus a nonzero value of Zc. This is related to the divergence of g(r0) as shown in figure 5(b).

When φ < φc, the system is not jammed and g(r) is a smooth function. But at φ = φc, the

coordination number goes to Zc discontinuously, this translates to a δ function at the radius

of the particles in g(r). And the area under the δ function should roughly be Zc.

In order to have the area under the δ function equals to Zc under scaling. The scaling of

the height of the peak should counteract the scaling of the width of it, i.e., η = ∆, where η

and ∆ are defined by

g(r0) = g0(φ− φc)
−η and s = s0(φ− φc)

∆. (10)

This is verfied by the data (η ∼ ∆ ∼ 1.0).

3.2 A diverging length scale

Similar to critical phenomena, there is a diverging length scale associated with the jamming

transition. If the system is held at a packing fraction slightly below the critical value, the

system is unjammed and all particles can move and rearrange. However, the number of

particles that must move in order to allow a rearrangement will depend on how close one

is to the transition. In an infinite system, if one applies a fixed, infinitesimal velocity to a

particle, it will move and disturb the rest of the system. The disturbance will extend to a

distance ξ−T , the transverse length scale, in a direction perpendicular to the applied force.

We expect that ξ−T will diverge as one gets close to the transition because as the density
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approaches the critical value, the particles are closely packed. More and more particles must

rearrange to allow for the single particle to move in the longitudinal direction. The idea is

illusrated in Figure 6.

A careful study of this transverse length scale is carried out by Drocco et al. [5]. They

solved a system of discs interacting through a harmonic potential in 2D. There is no external

force acting on the particles except one. And they measured the probability distribution

of velocity as the single particle is draged. They found that the number of moving discs is

given by

nmoving = n0(φ− φc)
−τ (11)

where 1.2 < τ < 1.46 is fitted. The data is shown in figure 7. Because the number of moving

discs, nmoving , is proportional to (ξ−T )d, we get ξ−T = ξ0
T (φ − φc)

−τ/2. This is the diverging

length scale in the system.

Similar studies on the vibrational modes of the system is carried out by Silbert et al. [19].

Figure 6: A sketch of the transverse length scale.

4 Discussion

The idea of a jamming phase diagram tries to unify different jamming systems. Up till now,

colloidal systems and systems of frictionless particles both show consistency with the picture.

Near the critical point, there are various power law dependences. There is also a diverging

length scale, just like what we get for critical phenomena. But beside the suggestion of
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Figure 7: Plot of nmoving against φc − φ, showing a power law dependence.

universality between these systems and a qualitative prediction of the phase diagram, the

jamming phase diagram does not provide any information about the physical system. In

the frictionless particle systems, O’Hern et al. studied the point J, at which the jamming

transition is well defined. But the critical exponent associated with that depends not on the

dimensionality, but the microscopic interaction potential between particles. There is no idea

how to understand this by conventional theories.

The motive behind the jamming phase diagram is universality. But it lacks a theoretical

model to predict various behaviors. One way to unify these systems is to bulid a minimal

model, capturing the local geometrical interaction between individual particles. The model

may come from one particular system, but it should be general enough to be applied to

other systems that jam. Because all of the jamming systems are disordered and break

egrodicity, normal technique of statistical mechanics is not applicable. We can formulate

the problem by using Edwards’ postulate of statistical mechanics of powder[20, 21]. Its

essence is to study a suitable ensemble averages over its ’mechanically stable’ states. The

resulting theoretical framework is the very similar to conventional statistical mechanics, with

the thermal average replaced by the configurational average. If one write down a minimal

model of free energy within this framework. Renormalization group can then be applied to

the theory, and universal features of the systems can be extracted. Perhaps we will then

understand what determines the exponents and why they have these particular dependence.
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