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Abstract 
In this paper, the concept of ubiquitous 1/f like noise and the idea of self 
organized criticality as the explanation are introduced using simple models. 
Both theoretical and experimental investigations are discussed to further 
explore the concept of SOC and test its validity.



Ubiquity of 1/f like noise 

1/f like response 

Properties of a physical system can be revealed by analyzing its responses 
against external perturbations. The way in which a system responses can be 
classified into several major categories. Here are some examples:  

(i) The simplest type is “linear response”. This kind of response always 
happens when a simple system is perturbed by a small external field. 
For example, a copper will response to a static electrical field by 
conducting electrical current. The current density J is proportional to 
the field strength E, and the coefficient is conductivity σ, which is 
determined by the system itself.  

(ii) However, when we consider a complicated system or a large 
perturbation, the response is not so simple: suppose we heat a cup of 
water at the bottom, if the temperature difference of water at different 
position is small, conduction will be the major way of heat transfer and 
the heat current is approximately propositional to the gradient of 
temperature; When the temperature difference is large, convection will 
predominate in heat transfer. Sometimes the water flow is completely 
disordered, and sometimes regular patterns will form (like 
Rayleigh-Benard Convection). 

In this paper, we will analyze a special kind of system which is a complicated 
system (particularly spatially extended, like a pile of sand) and whose 
responses to small perturbation do not have characteristic length or 
characteristic time. The responses contain a serial of events at all length and 
time scale. Their distribution vs. time or length abbeys power law, which 
means there is no expectation value of time or length of the responses. 
Particularly, the distribution of the energy released in the events has the form 
1/fα, with α≈1, so it is called “1/f like” noise. 

Earthquakes as an example 

Earthquakes are caused by the movements of continental plates and oceanic 
plates. Due to the movements, energy and stress will accumulate at a certain 
spatial point. When the rocks can not withstand the external force, they will 
deform, but the way they deform is different from a rubber band does under 
stretching. They release energy and stress by discrete, impulsive events 
spanning a broad range of size to achieve the deformation required by 
external restrictions, and every event corresponds to an earthquake. It is just 
like crumpling a piece of paper, which will form creases of all size. The power 



spectrum of earthquake signal has 1/f like noise [1]: 

 

There is an easy to see the power law behavior in earthquake without doing 
complicated data analysis – to plot the logarithm of number of occurrence 
versus the magnitude. I used the data collected by Calpine Geysers seismic 
network in 1995 at http://quake.geo.berkeley.edu to draw the following 
graph. Since the earthquake magnitude is a logarithmic measure of the energy 
released by the earthquake, this can be viewed as a log-log plot. The red line 
has exponent α=1.5, and the power law behavior extended nearly three 
decades. (This behavior is called Gutenberg-Richter law [9]) 

 

Analyzing a simple model can help to visualize the process that causes the 
rocks to release energy via events at different scale. In 1967, Burridge and 
Knopoff introduced a simple model (Burridge-Knopoff model [2]) to describe 
a fault, which has been extensively studied [3][4][5]. (See the following graph 



from [5]) 

 

The system consists of a chain of elastically coupled blocks; each connected to 
its two neighbors by harmonic springs and is pulled individually forward by 
leaf spring that moves at a constant speed. Note that the friction law has a 
nontrivial property, which is weakened at high velocity (illustrated in the 
figure from [5]).  

 

When the friction can not hold the blocks, they will move forward a certain 
distance to release the energy accumulated in the springs. One can imagine: 
due to the coupling between the blocks, the number of blocks involved in a 
single slip event has a very broad distribution. If one of the springs 
connecting the blocks is tightly compressed, one of the blocks will reach the 
threshold to slip earlier than others. This is a small event. If a large number of 
the springs are similarly compressed or stretched, many blocks will slip at the 
same time, which is a large event. Actually, the frequency distribution of the 
slip events (earthquakes) of magnitude µ has a power law behavior (figure 
from [5]). A nice simulation program is also online at  
http://simscience.org/crackling/Advanced/Earthquakes/TheEarthCrackles.
html 



 

1/f like noise is ubiquitous 

Power laws and 1/f like noise are found in many different phenomena: from 
earthquake to the noise in music [6]; from video broadcasts [7] to the power 
spectrum of ocean current velocity [8]; the number of systems in nature that 
present 1/f like noise is so huge that people think the presents of 1/f like 
noise is ubiquitous. Considering the appearance of power law and 
universality in the theory of critical phenomena, everyone will certainly make 
guess that there is also a deep reason for the ubiquity of 1/f like noise. Is the 
answer similar to the theory of critical phenomena? We will explore this topic 
in the following sections. 

Self organized criticality 

Relationship between noise at frequency f and spatial 

correlation 

Analyzing the Burridge-Knopoff model of earthquake, we find out that the 
noise (earthquake signal) is produced by the movement of the blocks. Since 
movements with different spatial size are related to different noises, it is 
natural to ask whether the spatial correlation of the system is related to the 
property of the noise. In fact it is true. The noise at a given frequency f is 
spatially correlated over a distance L(f), which increases as f decreases 
[10][11]. 

Let’s have a look at an experiment did on metal films [11]: 



 

This experiment is designed to measure the frequency dependence of the 
correlation of the 1/f noise from two regions of a single film (figure a). Each 
part of the film is supplied a constant current by separate batteries and large 
resistances R0. The noise voltage measured V1 and V2 are amplified with 
preamplifiers. The spectrums of their sum or difference are measured. 
Suppose S+(f) is the spectrum of V1+V2, and S-(f) is the spectrum of V1-V2, the 
fractional correlation is given by C(f)=[S+(f)-S-(f)]/[ S+(f)+S-(f)]. If V1 and V2 
are independent, then S+(f)=S-(f), C(f)=0. If V1=V2, C(f)=1. In this experiment, 
as the frequency f is lowered, the value of C(f ) becomes nonzero at a point 
when the correlation length λ(f) is comparable with the distance of the two 
regions where the noise voltages are measured. Figure b shows that low 
frequency noise is associated with large correlation length. This is an 
important observation: a system’s power law behavior in frequency domain 
maybe related to the power law behavior of spatial correlation. This leads us 
to a possible explanation of the ubiquity of 1/f like noise – self organized 
criticality. 

The idea of self organized criticality 

Self-Organized Criticality (SOC) was suggested by Per Bak, Chao Tan and 
Kurt Wiesenfeld in 1987 [12]. The title of the paper was “Self-Organized 
Criticality: An Explanation of 1/f noise.” In this paper, Bak et al. argued that 
when a spatially extended system with many degrees of freedom is driven 
away from equilibrium by an external force, the stationary state is a state with 



power law spatial correlation. It will spontaneously evolve to such a “critical 
state” that lacks a characteristic length. They also argued that lacking a 
characteristic length will cause lacking a characteristic time, which will induce 
a power law behavior into the frequency spectrum [13]. 

The most exciting message in this article is that there are systems that do not 
need a tuning of parameters but spontaneously evolve to a critical point. After 
the 1987 article, there are thousands of articles published on SOC - the 1987 
article accumulated about 2000 citations. However, there is controversy 
surrounding the 1987 article. Henrik Heldtoft Jensen, Kim Christensen and 
Hans C. Fogedby tried to repeat the same spectral analysis of the 1987 article, 
but found 1/f2 noise which is quite different from 1/f noise [13]. In fact, some 
recent researches argue that in some systems, SOC is not the underlying 
mechanism for the presence of temporal correlation between events[14][15], 
while other researches support that SOC can provide a dynamical mechanism 
which gives correlations between bursts leading to 1/fα noise[16]. As far as 
we know, SOC is still only a candidate to explain the ubiquity of 1/f like 
noise. 

Let’s have a look at the argument in the 1987 article: imagine an array of 
damped pendulums. The pendulums are connected by torsion springs which 
are weak comparing with the gravitational force. This is a good model to 
describe a spatially extended system. Now let this system be perturbed by a 
small external force. Suppose one of the pendulums rotates due to this 
perturbation, causing the forces on neighbor pendulums to change. Then, the 
changing of the forces on neighbor pendulums may also cause them to rotate. 
As this process goes on, the perturbation will propagate to elsewhere of the 
system. Then how far it will go? To answer this question, we can let the 
system start to evolve far away from equilibrium, where most of the spring’s 
forces on the pendulums are at a large value, so that small perturbation will 
cause them to rotate. In that case, a single perturbation can propagate to 
infinity, changing the global structure of the system, and release large amount 
of potential energy stored in the springs. This is the equilibration process: 
When more and more energy is released, the global structure becomes more 
and more stable. The system reaches equilibrium precisely at the point when 
perturbation can not propagate to infinity. Hence, the correlation function in 
such a system must have a power law form. The whole picture is “the system 
approaches through a self organized process to a critical point with power 
law correlation functions for noise and other physical quantities” [12]. 

SOC and the traditional critical phenomena 

To further explain the idea of SOC, let’s make an analogy between SOC and 
traditional critical phenomena [17]. The model we are going to discuss here is 



a pile of sand. The fundamental physics is that when we add particles to a 
sand pile, every particle will cause rearrangements of the sand pile to reach a 
stable state. When the pile is flat, only local rearrangements happen, and the 
pile will get steeper and steeper. If the initial state of the sand pile is steeper 
than a critical value θc, the sand will make rearrangement even if there is no 
particle adding to the pile. Hence, we can make an analogy between a pile of 
sand and the Ising model: the slope of pile θ corresponds to the reduced 
temperature t; the flow of sand corresponds to the magnetization m; the flux 
of adding particles corresponds to the external field h. Whenθ>θc, there is 
spontaneous sand flow. This is the ordered phase of Ising model. When θ<θc, 
there is sand flow only when we drive the system by adding particles to it. So 
this is the disordered state of Ising model. There difference between this two 
systems is that a sand pile always wants to evolve to a state with θ=θc. 

We can define several critical exponents to describe the non-equilibrium 
dynamical properties.  

Physical 
quantity definition Critical 

exponent definition 

Order 
parameter Flow J β J≈(θ-θc)β 

susceptibility δJ(x’,t’)=∫Χ(x’,t’;x,t)δJ(x,t)dxdt γ Χ≈(θc-θ)γ 

External 
field Flux of adding particles δ J(θ=θc)≈h1/δ 

  ν ξ≈(θc-θ)ν 

D(s) Distribution of avalanches size τ D(s) ≈s-τ+1 

S(ω) Power spectrum φ S(ω) ≈ω-φ 

l & t Spatial and temporal scale of 
an avalanche z t≈lz 

 

Basing on this definition, one can also ask that how many exponents are 
independent, and what are the scaling laws. For example, the flow J caused by 
the field h below θc is the average size of the clusters: 

Following this analogy, SOC can be studied in the fashion of traditional 

ξD 
Χ=∫   sD(s)ds=(θc-θ)-(3-τ)Dν            ∴γ=(3-τ)Dν 

0 



critical phenomena, like Lee-Yang zeros [18], Scaling functions [24] and 
renormalization group [19]. 

Experimental tests 
SOC is so attractive because it has the potential to explain the 1/f noises in a 
simple way without using any external fine tuning parameters. However, 
neither it is generally accepted that SOC implies 1/f noise [13][20], nor the 
systems used as examples of SOC (for example, the sand pile) robustly stay at 
SOC state [21][22]. 

After the 1987 article, H.M.Jaeger, Chu-Heng Liu, and Sidney R.Nagel [21] 
did an experiment to test whether avalanches on a sand pile have power law 
distribution. They monitored the avalanches caused by both adding sand to 
the pile (figure a) and changing the slope of the pile (figure b). The avalanches 
are recorded by letting the sand drop through a capacitor, and monitored the 
changing of capacity. They showed us a sand pile does not always have 1/f 
noise. 

   
One year later, G. Grinstein et al. did an experiment and the result supports 
the existence of SOC. They used a rotating computer controlled funnel to add 
sand one by one to the top of a pile, and monitored the fluctuation in the mass 
of the sand pile. (The following pictures are the experimental configuration 
and mass fluctuation signal) 

 



The distribution of falloff mass is approximately a power law, P(M)≈M-2.5, and 
more importantly, the distribution of avalanches has a scaling form: 
P(M.,L)=(1/Lβ)g(M/Lν), with β=2ν=1.8. The experimental data lie almost 
exactly on the same universal curve g(M/Lν). (The following pictures are the 
distribution of mass and the data collapse) 

  
However, instead of observing 1/f noise, they saw the spectrum falls of as 
1/f2 which is consistent with the power spectrum of a weighted random walk. 
(the power spectrum: ) 

 
In fact, in the past 18 years, many experiments on various systems were did, 
like Imre M. Janosi and Viktor K. Horvath’s work on water droplets [25] and 
G. W. Crabtree et al.’s work on vortices in superconductors [26]. However, 
those experiments did not result in a clear and consistent picture on SOC and 
the explanation of 1/f noise so far. 

Conclusion 

Bak et al.’s original idea is that: (i) The concept of SOC is universal – spatially 
extended systems in nature are always in the SOC state. (ii) SOC causes the 
1/f like power spectrum. These basic physical ideas are not hard to grasp 
when we consider simple models like a sand pile or the Burridge-Knopoff 
model. However, after 18 years of theoretical and experimental investigations, 
people still do not have a clear understanding on SOC. First, experiments and 
computer simulations have shown that many systems are at SOC state only 



under certain conditions, which means the concept of SOC does not have the 
universality claimed by Bak et al. Second, there are some systems that have 
the fingerprints of SOC but have 1/f2 noise instead of a nontrivial 1/f like 
noise. Nevertheless, Bak et al.’s idea is valuable in the sense that it provided 
people a way of solving such problems in a pre-established theoretical 
framework.  
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