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Patterned ground, defined by the segregation of stones in soil
according to size, is one of the most strikingly self-organized char-
acteristics of polar and high-alpine landscapes. The presence of
such patterns on Mars has been proposed as evidence for the past
presence of surface liquid water. Despite their ubiquity, the dearth
of quantitative field data on the patterns and their slow dynamics
have hindered fundamental understanding of the pattern formation
mechanisms. Here, we use laboratory experiments to show that
stone transport is strongly dependent on local stone concentration
and the height of ice needles, leading effectively to pattern forma-
tion driven by needle ice activity. Through numerical simulations,
theory, and experiments, we show that the nonlinear amplification
of long wavelength instabilities leads to self-similar dynamics that
resemble phase separation patterns in binary alloys, characterized
by scaling laws and spatial structure formation. Our results illustrate
insights to be gained into patterns in landscapes by viewing the
pattern formation through the lens of phase separation. Moreover,
they may help interpret spatial structures that arise on diverse plan-
etary landscapes, including ground patterns recently examined us-
ing the rover Curiosity on Mars.
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Patterned ground is widespread in cold regions (1–8). Distinct
sorted circles (1, 2, 5), stripes (1, 3), and labyrinths (5, 9),

ranging in scale from a few centimeters to several meters, form
during repeated freeze–thaw cycles as stones in the soil segregate
according to size due to complex interactions among water and
heat transport processes (10–13). However, stone patterns can
evolve over thousands of years or more in the field (14, 15),
making it difficult to determine their spatiotemporal behavior
(see Fig. 1 and SI Appendix, Supporting Information Text S1 for
more details). As a result, the fundamental physical principle
underlying the phenomena and the quantitative characterization of
the self-organization process remain unclear. Aside from creating
stunning nonbiologic patterns in the natural world, the phenome-
non merits close attention as it manifests soil processes important
in carbon cycling in permafrost regions (5, 16, 17), which both
affect and are affected by the rapid current warming in the Arctic,
and it constitutes an extreme natural example of self-organization
in excited granular materials (18–20).
Phase separation has in the past decades become a central

physical principle for self-organized patterning in cell structure
(21, 22), gravitational fluid (23, 24), active matter (18, 25–28),
and ecological systems (29–31). Herein, we suggest that the
principle leads to insights into pattern formation in geomorphic
systems. It is important to note that it is distinct from the prin-
ciple at the core of sophisticated phase-field models, which arise

from regularized partial differential equations designed to solve
moving boundary problems (32, 33), such as solidification fronts
(34, 35), fracture (36, 37), and so on. The concentration-dependent
movement feedback that leads to the spatial aggregation and dis-
persion of particles resulting in diverse patterns is central to the
phase separation principle underlying our models. It contrasts with
classical models with scale-dependent feedbacks; these include
models using the foundational and widely applied Turing principle
(see refs. 38 and 39 for details) and diverse other models, including
those of systems in which organisms attach themselves providing
positive feedback to aggregate at a small scale while creating
negative feedback at a large scale, and of spatial patterns that form
in near solidification fronts (35, 40–42). When a binary mixture,
such as stones and soils, is subjected to periodic external forcing,
for example, freeze–thaw cycles or cyclic vibrations, particles
autogenically separate and commonly form distinct spatial pat-
terns. This self-organization is similar to the well-known phase
separation of a mixed fluid into two phases, in which separation
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driven by minimum free energy results in distinct spatial regions
(43–45). Here, we investigate patterned ground self-organization
by examining the dynamics of stone movements in laboratory in-
vestigations. We show that phase separation is expected during
repeated freeze–thaw cycles, and using two models, we demon-
strate how the concentration-dependent movement of stones
produces diverse spatial patterns.

Results
Laboratory Experiment. Using a laboratory experiment with wet
soil subjected to freeze–thaw cycles (46, 47), we demonstrate
small-scale (1 to 10 cm) pattern formation resulting from cyclic
growth and decay of needle ice on the ground surface developing
either on level or sloping surfaces of a 100 by 50 cm soil area (see
Materials and Methods, and SI Appendix, Figs. S1–S3). Our ex-
periments addressed two key factors controlling the formation of
stone patterns: the fraction of the ground surface covered by
stones (hereafter termed stone concentration) and the slope of the
surface (SI Appendix, Table S1). Stone patterns developed from
stones that were initially evenly distributed. Within the first five
freeze–thaw cycles, small stone clusters form and progressively
merge with adjacent ones (Movies S1–S3). Coarsening of stone
clusters occurs (48, 49), and well-defined patterns are eventually
generated (see Fig. 2A and SI Appendix, Fig. S4 for more infor-
mation). On level ground, the patterns range from dispersed stone
clusters to connected irregular labyrinth forms as the stone cover
increases from 20 to 60%; isolated stone-free islands form where
the initial stone concentration is high (reference Movies S1–S3).
On inclined ground, as the slope increases from 5° to 7°, the stone
patterns transition to stripe-like patterns aligned downslope; clear
patterns did not form on steeper slopes (46).

Physical Mechanisms Underlying Patterned Formation. The stone
patterns in our experimental system result from the interactions

between stone concentration and the amount of needle ice that
forms under the stones. Needle ice growth and subsequent col-
lapse due to thawing are the direct drivers of stone motion (SI
Appendix, Fig. S2). The horizontal transport of individual stones
is stochastic and dependent on the length and curvature of the
underlying ice needles and local stone concentration. Contrary to
common assumption, much of this transport occurs during the
freezing phase (Movies S4 and S9). The amount of needle ice
that forms and the resulting stone motion in areas with low-stone
concentration (sparse stone areas) exceed those in areas of high-
stone concentration (dense stone areas) (SI Appendix, Fig.
S2 A–C). This drives net lateral transport of stones toward areas
with high-stone concentration and further increases the stone
concentration there (SI Appendix, Fig. S5 and Movie S4). This
positive feedback is further enhanced by the recently recognized
tendency for ice needles to curve and to move stones they lift
toward stone-rich areas (46, 47). On the other hand, high-stone
concentrations reduce needle ice growth, needle ice curvature,
and stone motion. This effect results in the stacking of stones in a
direction perpendicular to the soil surface (Movie S4), rather
than moving and dispersing them laterally, and hence creates a
negative feedback to stone aggregation. On sloping ground, in
addition to lateral sorting processes, downslope frost creep and
toppling or sliding failures during thaw phases play important
roles in net downslope displacement of stones, leading to elon-
gated patterns oriented downslope (46). Together, these physical
processes that drive stone movement and pattern formation are
critically dependent on the spatial variation of stone concentra-
tion, as well as the cumulative stone displacements caused by
needle ice growth and collapse.
The fact that the stochastic transport of stones depends on the

local stone concentration and surface slope implies that their
dynamics are nonlinear, potentially leading to pattern forming
instabilities. The transport of stones is strictly mass conserving,

~50 m

A

D E

~1 m ~10 cm

B C

~1 m ~10 cm
Fig. 1. Sorted patterned ground on Earth and Mars. Note range of length scales. (A) High Resolution Imaging Science Experiment (HiRISE)
(ESP_030222_1220) image of clusters of boulders southeast of the giant Hellas impact basin, Mars. Image credit: NASA/JPL/UArizona. (B) Labyrinths of stones
in Svalbard, Norway. Image credit: B.H. (C) Polygons in the Swiss Alps. Image credit: N.M. (D) Circles in Svalbard, Norway. Image credit: B.H. (E) Stripes in
Hawaii, USA. Image credit: B.H.
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and pattern formation can arise either through nonlinearities
arising from thermodynamics, as in phase separation in binary
alloys (50), or from motility-induced phase separation (27, 28,
51). This latter possibility is clearly supported by our laboratory
experiments that document how stones move as if self-propelled
through their interaction with ice needles and the local stone
concentration field around individual stones. In general, isolated
stones move significantly faster than stones with close neighbors
[Fig. 2B; Fwelch(2,357) = 6.61, P< 0.01]. Our data analysis yields a
strong negative relationship between stone speed and local stone
concentration at multiple scales (Fig. 2 C and D and SI Appendix,
Table S2); stones slow down when the surrounding stone con-
centration increases. This negative relationship is robust in terms
of residual analysis, even when excluding the larger-scale inter-
actions (SI Appendix, Fig. S6).

Phase Separation Implications for Patterned Ground Formation. We
now consider two classes of models that quantify the relation
between the stone speed v(S(r), H(r)), local stone concentration
S(r), and height of ice needles H(r), where r = (x, y) represents
position. As a first approximation, we assume that these effects
can be separated so that v(S,H) = vH(H)vS(S). This parametric
velocity dependence on space implies that the dynamics of the
stones will show important deviations from Fick’s Law, as is known
to occur in other systems, such as bacterial motion, where the
effective mobility is concentration dependent (52). We represent
the dependence of stone motion on concentration (Fig. 2C) as

vS(S) = v0e−λS [this constitutes the core of Model 1 with
vH(H) = 1; see Fig. 3A and SI Appendix, Supporting Information
Texts S2 and S3 for more information]. Experimental data also
revealed a relationship between local stone concentration and H,
the height of ice needles. H declines with increasing number of
stones in clusters (groups of overlapped and constrained stones)
from 1 up to 64 (Fig. 2E), showing that stone speed decreases with
increasing concentration S and decreasing H. Thus, we assume that
vH(H) is an increasing function of H and explore consequences of
specific assumed forms for vH(H) = βH in Model 2 (Fig. 3 B, Top).
For both models, the change of spatial stone concentration

with time obeys the law of conservation of mass, ∂S
∂t = −∇ · Jv,

with a local stone concentration that is composed of gradients of
S and H, along with rotationally invariant scalars of which the
lowest order is ∇2S. This results in the following:

Jν = −γv[v∇S + S
∂ν
∂S

∇S + S
∂ν
∂H

∇H] + κ∇(∇2S). [1]

Here, γ = 1=αd, where α is the collision rate per stone that de-
pends upon position and direction of motion (52), d is the spatial
dimension (i.e., ref. 2), κ > 0 is the coefficient of potential energy
forces (equivalent to the dispersal coefficient by a unit stone at a
nonlocal scale) (52), and

̅̅̅
κ

√
is the characteristic width of the mobile

convergent front of the low- and high-concentration phases. In prin-
ciple, there could be a higher-order term in H, but this is neglected

B C F

D E

A

Fig. 2. Self-organization of stone patterns and stone motion in the laboratory. (A) Spatial pattern development starting from a uniform 30% stone cover
through 30 freeze–thaw cycles. The panels cover an area ∼0.4 m on a side. (B) Box violin plots of the speed of individual stones for three configurations,
homogeneous state at 80% cover (no patterns), isolated stones, and arrested stones (within patterns) at 40% cover (patterned), respectively. The boxplot
spans the 25th to 75th percentiles. Red dots indicate mean values. The statistical analysis was implemented with Welch’s one-way ANOVA, F(2,356) = 6.61,
P < 0.01, and the significant levels were adjusted with the Benjamini–Hochberg method for comparisons among groups. (C) Relationship between stone speed
and local stone concentration (within ∼3-cm radius, see F) during ∼30 freeze–thaw cycles. The solid line is the function v(S) = v0e−λS with a decay rate of
λ = 0.85, P < 0.01, and n = 1854 (reference SI Appendix, Table S2 for models’ selection and statistical parameters). (D) Similar to C, the residual speed but
removal of the effect of concentration beyond twofold radius. (E) Inverse relationship between the needle ice height and number of stones in clusters (n = 4
per treatment). The significance of changes among treatment clusters: *P < 0.05, ,and “NS” for P > 0.05. Error bars represent one SD in C–E. (F) Schematic
diagram shows the definition of the local cover and concentration for the center stone in the analyses of C and D. Reference Movies S1–S4 for sorted
patterned ground and stone movement.
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here as the characteristic front width is likely to be much smaller
than for S. The mobility of individual stones can be expressed by an
effective diffusivity De(S,H) = D(S,H)∇S + SD’(S,H)=2, where
D(S,H) = γv(S,H)2 in the models. To complete our description
of the coupled needle ice stone system, we represent the negative
feedback between the stone concentration and needle ice height by
the following equation (Fig. 3 A and B):

∂H
∂t

= win − aSmH − rH +Dh∇2H. [2]

On the right-hand side, the first term win describes the water
input in the soil. The second term describes the inhibitory effect

of increasing stone concentration on needle ice growth; a and m
are positive empirical coefficients, where m represents the sen-
sitivity of ice growth to stone concentration (m = 2 is assumed
here, because a linear coupling between S and H is ruled out by
the upward curvature visible in Fig. 2E and SI Appendix, Fig. S1).
r is the specific rate of loss of the H2O (both water and ice) due
to evaporation, and Dh is the diffusion coefficient representing
the H2O (both water and ice) transport processes during a
freeze–thaw cycle. Eqs. 1 and 2 constitute a complete description
of the system dynamics. The form of Eq. 1 is reminiscent of the
equations governing phase separation in alloys and is expected to
lead to pattern formation. To check this, we compared our ex-
perimental results with the two models of patterning resulting

λ=1/S
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Fig. 3. Phase separation and the diversity of self-organized stone patterns. (A and B) Phase diagrams illustrate the dependence of pattern formation for both
models (Top) on stone concentration and speed decay rate (λ) and define the regions in which the phase separation switches from the one- to two-phase
regimes (Bottom): stone-poor and -rich phases. Each point (x, y) represents a parameter set (S0 = x, λ = y) for the model equations. The theoretical predictions
(white lines) coincide with numerical results. (C) Simulated 2D stone patterns with increasing stone concentrations from 20 to 80% for both models. Numerical
simulations were implemented using periodic boundary conditions with parameters λ = 3.0, d = 2, τ = 1.0, and v0 = 2.02 (reference SI Appendix, Table S3 for
additional details). Islands transform to labyrinths and polygons with increasing stone concentration, and no pattern develops at high-stone concentration.
Color bar represents stone concentration in units of g/cm2. Spatial scale with 5.1 m. (D) Self-organized patterns formed in the laboratory within 240 to 360 h
due to repeated freeze–thaw cycling with stones initially laid out evenly on the soil surface: islands (20% cover), labyrinths (30% cover), polygons (40% cover),
homogeneous state (80% cover), and incipient stripes (20% cover on a sloping surface of 7°; white arrows show the general downslope direction) [reprinted
with permission from ref. 46]. Reference Movies S5 and S6 for numerical simulations of Model 1 and 2, respectively.
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from ice-induced stone displacements: one dependent on stone
concentration only (Model 1, Fig. 3A and Movie S5), and the
other also including explicitly the dependence on the height of
ice needles (Model 2, Fig. 3B and Movie S6). Our models yield
diverse spatial patterns, similar to those emerging under a range
of experimental conditions (Fig. 3 C and D) and at various field
sites (Fig. 1 B–E). They include well-defined stone islands, as
well as stone circles, and labyrinths on level ground. There are
two end members in our theoretical phase separation model:
bare soil with no stones (S → 0) and soil with the ground surface
fully covered by stones (S → 100%). According to theory, these
single-phase regions are bound by curves, λ = 1=S0, so-called
spinodal lines as shown in Fig. 3A. In the two-phase regions,
both islands and labyrinthine patterns emerge in a finite con-
centration range. This theoretical phase separation boundary

coincides with laboratory experiments, where regions of interme-
diate stone concentration separate distinctly into homogenous
regions with either sparse or dense stones (Fig. 3 C and D).
These results illustrate the important role of needle ice height
in shaping the sorted patterns with different stone concentra-
tions (Fig. 3B and SI Appendix, Fig. S10). In the experiments,
the self-organization was pronounced, forming distinct stone
patterns, including stone islands, labyrinths, or circles, which
emerged after only 30 freeze–thaw cycles in experiments with
initial stone concentration below Sc (ca. 60%). Above this crit-
ical value, only a few large clusters of stones formed (Fig. 3D
and Movie S7). Note that the phase separation models also
reproduced stripe-like patterns on sloping ground by incorpo-
rating downslope soil creep effects into the models (Fig. 3 C
and D).

A

B

C

D

E F

Fig. 4. Comparing experimental and theoretical results for well-defined, triple concentration patterns. (A) Vertical view of initial arrangement of stones in
concentric rings of increasing stone concentration away from the center. (B) Observed net radial flux of stones, positive for outward and negative for inward.
(C) Stone displacement field from phase separation Model 1 with λ = 0.85. (D) Stones diverge from the stone-poor central domain and move inward from the
inner side of stone-rich peripheral domain. (E) Radial decrease in needle ice height with increasing stone concentration during first freezing period. Inset
shows the area photograph. (F) Box plots showing needle ice height in the three concentric 10, 40, and 80% stone domains shown in A. Boxes extend from
the lower to upper quartile values of the data. Horizontal lines mark the median heights. Comparisons are as follows: *P < 0.05 and **P < 0.01. Reference
Movies S8 and S9 for experimental details.
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As is well-known, phase separation initially arises from a linear
instability in which particles diffuse from low concentration to
high concentration, that is, opposite to Fick’s Law, until non-
linearities overwhelm the aggregation process, leading to pattern
restabilization through scale-invariant dynamics (53). To test
these predictions and the expected relationship between stone
velocity and concentration in phase separation models, we con-
ducted an experiment with three domains with different initial
stone concentrations as shown in Fig. 4 (see Materials and
Methods and SI Appendix, Fig. S7). The velocity fields in both the
model and experimental data coincide with one another: velocities
shifting from radially outward to inward with increasing distance
from the center (Fig. 4 B–D). The net radial flux is outward for
lower concentration, but it is inward for high concentration. It is
noteworthy that two clear dips appear at the interfaces between
stone-poor and -rich domains. Interfacial phenomena are strongly
implicated in coarsening dynamics for phase separation described
by the quartic gradient term of Eq. 1. Furthermore, as the stone
concentration increases from 10 to 80%, needle ice crystals de-
crease in both height and curvature (Fig. 4 E and F, respectively),
confirming the negative feedbacks between stone concentration
and motion and providing further impetus for extending the phase
separation model with a single variable (Model 1) to one (Model
2) with two variables. Overall, our results indicate that the phase
separation models capture the key elements of self-organization in
wet soils undergoing diurnal freeze and thaw cycles.

Scale Invariance and Self-Similar Dynamics of Patterns. To deter-
mine whether our data displayed nonlinear restabilization and
dynamic self-similarity expected from the models, we analyzed
all images in each experiment (e.g., ∼2,160 images for 30
freeze–thaw cycles in an experiment with 40% stone cover) and
characterized the length scale of the observed patterns using
two-dimensional (2D) Fourier analysis (54) (power spectra were
derived using a square, moving window method). We calculated
the temporal evolution of the dominant wavelengths for level
and sloping ground surfaces (SI Appendix, Fig. S8). The wave-
lengths in the early phase of the experiments are in quantitative
agreement with the simulations. They increase considerably and

nonlinearly in the first 180 h within 15 freeze–thaw cycles; sub-
sequently, the patterns stabilize (Fig. 5 A and B). Importantly, the
models qualitatively account for this early coarsening behavior,
which is robust and independent of initial stone concentration and
surface inclination. For sloping ground, experimental results co-
incide with the t1/3 scaling law that is standard in phase separation
models (22, 29) during the first 180 h (∼15 freeze–thaw cycles;
Fig. 5A and Table 1). In contrast, for level ground, experiments
reveal a t0.23 scaling law (Fig. 5B and Table 1). This type of scaling
law agrees with the results of a quite different grain-scale model
developed by Kessler et al. (2, 10) who focused on seasonal frost
heave and subsurface ice growth as formative mechanisms for the
larger scale (∼2- to 4-m diameter) patterned ground.
It is noteworthy that the relatively fast coarsening behavior on

sloping ground can be attributed to the more directional move-
ment with a bias downslope than that random stone movement in
level scenarios (SI Appendix, Fig. S5), as well as the progressive
elimination of complementary stripe defects, so-called stripe ter-
mination pairs (3). A similar phenomenon occurs in other systems
in which there are long-range interactions, such as in block co-
polymers that only exhibit microphase separation at long times.
However, at short times, even these systems exhibit phase sepa-
rations, although the exponent describing the growing length scale
is frequently found to be of order 1/4, at least when the interface
width is not very small with respect to the domain size (45). Here,
the oriented movement can result in overlapping stones on sloping
ground, whereas level ground display quasiconservation (SI Ap-
pendix, Fig. S9). The deviation from the scaling laws after 15
freeze–thaw cycles presumably occurs because the models do not
consider other geomorphic processes (55). This slow down and
0.25 power-law behaviors could in principle be captured with an
additional term that describes interfacial dynamics, such as the
celebrated Kardar–Parisi–Zhang dynamics (32, 45, 56, 57).
To quantify the emergent length scales (58) more precisely, we

calculated the dynamic structure factor S(q, t), where q is the
modulus of the wave vector, that is, the Fourier variable conju-
gate to r. At large q, the functional form of S(q, t) is determined
by the boundaries between phases and in 2D is expected to lead
to a variant of Porod’s Law, where S(q, t) ∼ q-3 (59). Both model

A

B

C

D

Fig. 5. Scaling behavior of the pattern coarsening from experiments and simulations. (A and B) Temporal evolution of dominant pattern wavelength on
sloping and level ground. Note, the datasets are offset from one another for graphical clarity. Experimental data (colored solid lines with symbols) and
numerical simulations with both phase separation models (solid lines). The dashed lines fit the experimental data with a power law at early stages. (C and D)
Scaling behavior of the self-organized patterned ground from experiments and models. The rescaled structure function S(q), as a function of wavenumber
q/qm, qm = ∫ qS(q)dq=∫ S(q)dq, versus the number of freeze–thaw cycles for experiments and simulations (see Materials and Methods for details). (Insets) The
scaling of dominant wavenumbers plotted against the freeze–thaw cycles.
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and experiment follow this universal trend. Furthermore, the
rescaled structure factors collapse to form a master line when
S(q)q2max is plotted versus q=qmax, where qmax is the time-dependent
wavenumber corresponding to the width of spatial patterns from
S(q, t), indicating that numerical simulations and experiments are
undergoing the same coarsening process (Fig. 5 C and D). The
reason that S(q, t) does not vanish as q tends to zero is that the
stones overlap so that effectively in 2D the global conservation of
mass does not hold. The time evolution of qmax is shown in the
insets of Fig. 5 C and D. Whereas the scaling collapse reported
above is expected in any phase separation process with a single,
emergent length scale, the time dependence of the length scale
reflects finite-time and finite-size effects and need not be power
law. In theoretical studies of motility-induced phase separation, the
exponents have also been found to be in the range 0.2 to 0.3,
possibly indicative of slow crossover to a value 1/3. The observation
of these dynamic scaling laws in our experiments and models is an
example of motility-induced, sorted patterned ground formation
going beyond phase separation in the active matter (24, 28).

Discussion
Two models currently exist for the origin of patterned ground;
both are based on grain-scale numerical simulations. In the first,
Werner and Hallet (3) suggested that differential growth of
needle ice (between soil domains having different elevations and
different abundances of stones) produced stone stripes with a
typical spacing of ∼0.1 m. In the second, Kessler and Werner (2)
proposed that a diversity of forms of meter-scale patterned ground
emerge spontaneously from two feedback mechanisms associated
with subsurface ice growth (lateral sorting and stone domain
squeezing during ground ice freeze–thaw). These seminal models
have been very instructive, but they have yet to be thoroughly
tested or validated. Here, we took quite a different approach.
Starting with unprecedented results from laboratory experiments,
we developed a theoretical foundation, building on recent phase
separation studies but with a modification that arises from the
active or nonequilibrium nature of the needle ice–driving force.
Our phase separation model provides a coherent explanation of
the early stages of sorted patterned ground but does not aim to be
a numerically predictive model of its long-term evolution (2, 3). By
modeling the feedback between the amount of needle ice and the
stone concentration, we reproduced the field-observed diversity of
stone patterns, including stone circles, labyrinthine patterns, and
islands on level ground. Incipient stripe-like patterns developed on
sloping ground, but the formation of very well-defined regular
stripes in laboratory may require a much larger experimental ap-
paratus and larger numbers of freeze–thaw cycles.
Theoretically, we remark that the pattern formation mechanisms

discussed here involve large-scale instabilities throughout the region
of interest and are of a somewhat different character than other
geophysical pattern formation phenomena that arise from front
propagation. For these phenomena, such as crack formation in
basalt columns (36, 37), advanced moving boundary methods can be
used, for example, using so-called phase-field models (33, 34).
The pattern forming mechanisms driving the phase separation

process in Arctic sorted patterns results from cyclic freezing and
thawing. Because of that, changes in rock pattern formations

may be indicative of changes in freezing conditions, pointing to
permanent thawing in areas where patterns are observed to be
lost. Our results support these predictable arguments that sorted
patterned ground are not only by themselves sole local movement
processes (Fig. 3A) but also dependent on the feedback effect of
needle ice on movement speed (Fig. 3B and SI Appendix, Fig.
S10). Hence, changes in the characteristics of rock patterns may be
a crucial first sign of local climate change impacts, pointing at
potential future soil loss. This may be observed on Arctic regions
on earth, but changes in rock pattern formations may equally be
indicative of changing conditions on Mars or other planets and
could in the future be used to study temperature changes as well as
the dynamics of soil conditions with planetary studies.
Aside from its intriguing geometric regularity, patterned

ground is important because it may provide valuable information
about surface processes and conditions in remote or hostile re-
gions where detailed observations or monitoring are difficult or
impossible, both on Earth and beyond. For instance, changes in
patterned ground may signal subsurface changes in the vast per-
mafrost regions of the warming Arctic where instrumentation is
extremely sparse at best (16). Visible changes in patterned ground
could provide important clues about the release of greenhouse
gases from the permafrost to the atmosphere (60). Novel types of
patterned ground onMars revealed in detail by the Curiosity rover
are currently being studied to further understanding of the un-
derlying processes and the clues they contain about energy and
mass exchange between the atmosphere and lithosphere on our
neighboring planet (61). Our mathematical description of the
universal principles that govern pattern formation contributes to
understanding the processes that shape ground surfaces found in
cold regions and may help in identifying the impacts of global
climate change on our own planet.

Materials and Methods
Sorted Patterned Ground Implementation in Laboratory. The laboratory ex-
periments were implemented with the same procedures and environmental
conditions but on level ground and sloping ground, respectively. We first
conducted a series of experiments in the controlled cold room to simulate
patterned ground formation on level ground conditions with 20, 30, 40, 60,
and 80% stone concentration, being ∼648, 912, 1,226, 1,916, and 2,597 stone
individuals, respectively. The second series of experiments targets patterns
on sloping ground by changing gradient from 5 to 11% (ref. 46) (SI Ap-
pendix, Table S1). The height of needle ice, soil temperature, and moisture
were recorded at 10-min intervals with two multichannel data acquisition
systems in each experiment (46, 47). Once each experiment had finished, all
images of the surface patterns from top and side view were connected to
produce a video (Movies S1–S3 and S7).

Feedback Between Stone Clusters and the Height of Ice Needles. In addition to
concentration-dependent movement determining the dynamics of self-
organized patterns, the height of ice needles contributes a crucial role to
stone movement and pattern evolution. To quantify the relationship be-
tween local stone concentration and height of ice needles, we manually
measured the height of ice needles below stone clusters of 1, 2, 4, 8, 16, 32,
and 64 individual stones of 4 to 8 mm in diameter, which were stacked into
seven circles naturally corresponding to diameters of 0.5, 0.8, 1.5, 2.0, 3.0,
4.0, and 6.0 cm, respectively. In general, we found that the needle ice height
is inversely proportional to the number stones of the clusters from 1 up to 64
and is consistent with the negative relationship between stone movement
and the height of ice needles. We see the same general relationship be-
tween stone concentration and stone speed.

Real-Time Trajectory and Local, Concentration-Dependent Movement Analysis.
To quantify the relationship between gradient in stone concentration and
pattern formation, and how interactions between individual stones (clusters)
determine pattern formation, we manually traced the movement of indi-
vidual stones in successive images of our experiments and analyzed their
characteristics in relation to gradient in concentration. All the movement
trajectories of individual stones were recorded manually using the free
software Fiji (https://imagej.net/Fiji/Cite, developed by the NIH) with the
Track-Mate package (62).

Table 1. Statistical properties of coarsening dynamics on
experimental evolution at early stages

Experiment Exponent* SD P value R2 n

Sloping ground 0.34 ±0.010 <0.0001 0.78 3
Level ground 0.23 ±0.012 <0.0001 0.87 4

Note that the nonlinear regression model was used to obtain the
exponent with “fitnlm” function in MATLAB 2020b. n indicates the
independent experimental replicates.
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We determined both the speed of and extent of stone concentration
surrounding individual stones by extracting the specific stones as they moved
from an isolated location toward the patterned inner and open areas (soil).
The concentration of stones in the neighborhood of a tracked stone was
estimated by measuring the fractional cover of the stones within the dis-
tances of 1.2-, 2.0-, 3.0-, 4.0-, 5.0-, 6.0-, 7.0-, 8.0-, and 9.0-fold of the diameter
(see Fig. 2F for an example). These specific setups correspond to the spatial
scales of about 12, 18, 24, 30, 42, 48, and 54 mm for stones with an ∼6-mm
stone diameter. Following the methods proposed by van de Koppel and
coauthors (63), images were converted to binary bitmaps indicating the
presence or absence of stones using a custom-made MATLAB program. All
circles were extracted from these bitmaps, with the tracked stones set at the
center. The central circle of the onefold radius was excluded as it contains
the tracked stone itself. To covert the cover estimates to concentration (as it
is convenient to use continuum variables in the theoretical model), we
precisely measured the local concentration of stones with 100% cover and
their weight. Finally, we obtained the conversion factor of 4.0 in our labo-
ratory experiments; that is, local stone concentration is about 4.0 g/cm2

when the stone cover is 100%.

Statistical Analyses. A one-way ANOVA was used in R (64) to test whether
speeds differ among stones in homogenous, isolated, and patterned sce-
narios. A Bonferroni correction was employed, and all P values below 0.05
were considered significant. Statistical details can be found in the main text
and figures. A data point was considered an outlier if it was greater than the
75th quartile + (1.5 × interquartile range [IQR]) or lower than the 25th
quartile − (1.5 × IQR). Furthermore, we analyzed the relation between local
stone concentration and speed with a generalized linear model using hy-
perbolic and exponential functions, respectively. The best single-scale model
as well as the two-scale multiple model were selected from all possible sets
using Akaike’s information criterion. The summary results of the movement
relationships are listed in SI Appendix, Table S2. The two-scale multiple
model shows that the negative feedback always occurs at the largest radius
based on the Z-score test. This implies that a two-scale feedback relation is
unrealistic for our self-organized patterned ground experiments. This was
further confirmed by the correlation coefficient of changed spatial scales as
shown in SI Appendix, Fig. S6, in which the experimental data revealed
positive feedback even at the scale of ninefold the diameter.

Velocity Field and Radial Flux Analyses. To quantify feedback between stone
concentration and displacement field, a triple stone concentration sorted
annulus experiment had been designed. Inside diameters of outer, inter-
mediate, and inner circles are 40, 30, and 10 cm, respectively. Out annulus is
full with 80% stones, while intermediate annulus and inner circles are full
with 40 and 10% stones. All the stones were placed on the surface of soil in
the container and subjected to 20 freeze–thaw cycles with air temperature
oscillating between −5 and 10 °C for 12 h in a cold room. We obtained the
velocity fields with Particle Image by Velocimetry PIVLAB package (version
2.02) in MATLAB 2019a (65). Contrast limited adaptive histogram equaliza-
tion was used to enhance contrast, and a high-pass method was used to
filtrate out the low-frequency signal during preprocessing of the images. For
the laboratory experimental images and simulated data, we defined the
point with the minimum velocity within the circular patch as the center of
radial direction. The displacement velocity was obtained with two consec-
utive snapshots. Furthermore, we calculated the amount of net radial flux at

distance r with formula Jflux(r) = ∮
2π

0
v(r,φ)dφ.

Data Availability. The experimental data analyzed during this study are
available in the manuscript and SI Appendix files. All custom-made simula-
tion codes are available online at GitHub: https://github.com/liuqx315/Phase-
separation-patterned-ground. All other study data are included in the article
and/or supporting information.
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S1. Motivation and background on patterned ground
Patterned ground ranging from decimeter- to meter-scale spatial wavelengths is a common mor-
phological feature found in many cold and periglacial environments (1–22) and see Supplementary
information (SI) Table S4 for more detailed information all over the world. It consists of mostly
symmetrical geometries, such as circles, stripes, nets, and labyrinths, displaying across the Earth
surface. Most research on patterned ground has involved field studies of the processes responsible
for the characteristics of present-day patterns, and their feedbacks to climate change (1–3). Several
studies focus on patterns origins and development, where patterned ground is ascribed to frost
sorting (23–25), frost cracking (23), upfreezing (26), soil moisture flux (27) and wind action (4, 5).
Earlier numerical models suggest that water-soil convection (27) controls the formation of observed
patterned ground. Although these numerical models can reproduce sorted stone circles or stripes,
they cannot provide full physical-based mechanisms for explaining the origin and evolution of these
observed patterns. Kessler and Werner (2003) suggested that typical patterned grounds along a
broad range of external environments form by self-organization processes (28). Based on the concept
of self-organization, they developed a comprehensive model of patterned ground that successfully
predicted pattern formation and transitions between different morphologies under different external
conditions (slope and stone concentration). The formation of district patterns is controlled by three
processes: lateral sorting, squeezing, and slope gradient. Although the model is powerful and useful
for explaining observed self-organized patterned ground, experiment or field evidence to support
this theory is still lacking. Hitherto, the explicit articulation of controlling rules that underlie the
self-organization is missing (29). In this Supplementary Information, we take a step to providing a
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detailed analysis of this problem through both controlled laboratory experiments and quantitative
modeling.

S2. Laboratory experimental setup and environment measurement
A schematic diagram of the experimental apparatus is shown in SI Appendix , Figure S1A. Patterned
ground formation by stones (ρp = 2.01± 0.01g/cm3) was studied in the laboratory with a 100 cm ×
50 cm × 35 cm plastic container filled with volcanic soil (ρs = 1.52± 0.01g/cm3). The experimental
soil was excavated at the campus of University of Tsukuba, Japan, where needle ice widely grew in
winter (SI Appendix , Figure S1 C–E). The soil texture was a natural frost-susceptible mixture with
50% sand, 27% silt and 23% clay by weight after remove contaminates with a 2 mm mesh sieve. The
entire soil was near-saturated by the sprinkling of water slowly from the top surface and allowing it
to settle for ∼24 hours to homogenize moisture content, which ensured that the spatial distribution
of soil moisture was homogeneous before experiments.

The whole container was wrapped with a heat-insulated foam board (∼10 cm thickness) on the
sides (SI Appendix, Figure S1E). The container was subjected to 20 – 40 freeze-thaw cycles with
air temperature oscillating between –5 ◦C and 10 ◦C in 12 hours in a cold room which was found
to easily cause intensive needle ice activity (24, 25) (SI Appendix, Figure S1B). We began each
experiment after cooling the container at 2 ◦C for ∼24 hours. Subsequently, the initial temperature
allowed to reach ∼5 ◦C. As a natural clast simulant, white commercial stones 4 – 8 mm in diameter
were used. They were laid-out at quasi-equal spacing on the volcanic soil surface over a square of
40 cm × 40 cm. The amounts of stones used were always such that a shallow layer regime was
maintained, with layer height ranged from 4.2 ± 0.1 mm (at 20% concentration with 1 layer) to 6.3
± 0.1 mm (at 80% concentration with ∼1.5 layers).

The growth and decay of needle ice was measured at 10-minute intervals on a 2.5 cm × 2.5
cm grid using a laser displacement sensor (IL030, Keyence, Japan). Temperature sensors (K-
type thermocouples) were imbedded into soil at 0, 2, 5, 10 and 15 cm depths respectively. Four
thermo-hydro sensors (5TE, Decagon, USA) were used to monitor the soil moisture content inside
the container at 2, 5, 10, 15 cm depths. These soil moisture measurements corresponded closely
with those measured with thermocouples at the same depths. All temperature and soil moisture
data were automatically recorded at 10-minute intervals in two data acquisition system (NR-600,
Keyence, Japan and Em50, Decagon, USA). Manual tests of the actual needle ice height below
the stone clusters were not performed during the experiment to avoid artificial disturbance, but it
was done during additional freezing (31th freezing) when an experimental run had finished. All
movements of the pebbles and development of patterned ground were recorded by taking an image
at 10-minute intervals using two time-lapse cameras, one was positioned about 50 cm above the soil
central surface (arena) and the other was placed about 10 cm outside the container (SI Appendix ,
Figure S1A). For each experiment, we have carefully collected camera image data, from which we
have subsequently produced movies of patterns evolution. We randomly selected several stones as
markers (painted red or yellow) and manually tracked their positions by using a free software Fiji
(https://imagej.net/Fiji/Cite, developed by National Institutes of Health) (30) for mapping trajectories
in two-dimensional space. We cleaned the pebbles of attached soil using a syringe filled with 25 ml
water regularly during the warming period. Note that no external perturbations were applied and
the initial ground was essentially uniform in terms of texture and soil moisture content, and the
ground surface was effectively planar for all experiments.
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S3. Theoretical models of sorted patterned ground
In this section, we develop theoretical models to study the influence of concentration-dependent
speed on phase separation of self-organized stones’ patterns. In subsection S3.1, we first give a
qualitative relationship between local stone concentration and their movement speed. Subsequently,
we develop a simple mesoscopic model of phase separation based on the interaction between stones
and the height of ice needles in subsection S3.2. We use the term “phase separation” to denote the
evolution of patterns with a bimodal distribution of the stone concentration field in space. The
separation is the process of an initially uniform state developing such a concentration pattern, similar
to the patterns observed during phase separation in materials science. In fact, this analogy may
not be superficial: mathematical similarities between the stone patterns and the phase separation
patterns in materials science naturally arise as shown below.

S3.1. Theoretical model description.Our proposed phase separation models (Figure 3A in main
text) capture interactions among stones and the relationships between the movement speed and local
stone concentration. The details of concentration-dependent movement determine the emergence
of self-organized patterns in our experiments as were shown in our main text for different stone
covers (Figure 3D). In our models (see SI Appendix, Table S3 for definitions of its variables and
parameters), S(r) (here r = (x, y)) describes the local concentration of stones. The stone speed
observed experimentally, is well approximated as

v(S) = v0 exp(−λS). [S3.1]

For simplicity, here, we have assumed that stone concentration is the only property affecting stone
speed and neglected other potential influences. The experiments are well-enough resolved to extract
the local stone concentration field, in a similar way to our previous method on mussel beds (31).
However, the stones are moved also by needle ice clusters, and themselves influence the height of
needle ice clusters. This interplay – plays a crucial role in stone mobility in two ways, and is a
core conceptual framework in our work. First, thick needle ice clusters promote stone speed, and
secondly, thick clusters are limited to low stone concentration areas as evidenced by our experiments.
Therefore, both the local stone concentration and the local height of ice needles into determine the
stone speed, so that more generally, the velocity in Eq. (S3.1) becomes as function v(S,H), where
H depicts height of ice needles.

We shall describe the above two physical processes and the resulting self-organized patterns as a
binary mixture of needle ice and stones, with the stone concentration playing the important role of
the concentration of one of the components in a binary allow in the appropriate phase field equation.
As a result, we will see that our experimental stone systems display many of the features of phase
separation dynamics (32).

S3.2. Deterministic models.To develop our phase separation framework, we first analyze a specific
model of mobile stones whose speed depends directly on local stone concentration. Here the stones
can interact locally in various ways, ranging from steric collisions to lateral squeezing (28) and
random diffusion on soil surface due to needle ice bending in random direction below each individual
stone (SI Appendix , Figure S2). Thus, the former processes lead to aggregation, locally increasing
stone concentration. We focus on the net effect of all such interactions on stone speed v(S,H), which
decreased with increased concentration S, and decreased height of ice needles H, i.e. ∂Sv(S,H) < 0
and ∂Hv(S,H) > 0 (SI Appendix, Figure S12). This dependence might include the local effect of
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squeezing-collision and the positive feedbacks between the height of ice needles and stone speed,
which cause aggregation, but does not include top-surface tension driven by gravity, such as slip and
rotation during the thawing of needle ice (33).

We now derive coarse-grained continuum equations for the mean-field concentration of stones
S(r, t) in a two-dimensional space, with a velocity-concentration relation of the generic form v(S,H)
fitted from our experimental data. At large scales in a uniform system, the motion of individual
stone is characterized by a diffusivity equation of the coefficient,

D (S,H) = γv(S,H)2, [S3.2]

with γ = 1/dα. Here α is the tumbling rate of stone trajectories without collision events, and d is
the spatial dimensionality, as follows from earlier existing mathematical derivation (d = 1 for one
dimension and d = 2 for two dimensions) (34, 35). In contrast to constant speed, a spatial nonuniform
stone speed v(S,H) also results in a local-drift flux in this case given by Jv = −γv(S,H)∇[v(S,H)S]
(35). In the case of concentration-dependent movement, the drift flux of stones gives:

Jv = −γv
[
(v + S

∂v

∂S
)∇S + S

∂v

∂H
∇H

]

= −

D(S,H)∇S + SD
′(S,H)/2︸ ︷︷ ︸

=De(S,H)

 = −De(S,H). [S3.3]

Note that the velocity-concentration relation v(S,H) is a function of S and H, both of which are
a function of spatial location r. In the last step we have expanded the term ∇[v(S,H)S] and we
suppressed the explicit dependence of the speed on the concentration of stones and the height of ice
needles for notational simplicity.

The change of spatial stone distribution is expressed by the above drift fluxes and mass conservation
processes as ∂S

∂t
= −∇ · Jv. We can now combine the net flux of stones in equation (S3.3) with the

effective surface tension caused by the gravitational potential to define the general conservation
dynamics for self-organized stones’ patterns by

∂S

∂t
= ∇ · [De (S,H)]−∇2 ·

[
κ∇2S

]
. [S3.4]

Here De is referred to as the effective diffusivity, (κ is the coefficient of potential energy forces
(equivalent to the dispersal coefficient by a unit stone at a non-local scale), and

√
κ is the charac-

teristic width of the mobile convergent front of the low- and high-concentration phases based on
the standard solution (S(r) = tanh( r√

2κ)) of the Cahn-Hillard equation. The term of ∇2 · κ∇2S(r)
behaves like a surface tension term in phase separation, since it protects against over aggregation
from the movement caused by lateral squeezing, which would make the stone concentration at
location r exceed the maximum allowing value. Such a contribution also arises when the speed
of a particle/organism depends on the average concentration in a small local region around the
particle/organism on aggregation-behavior systems (34–36).

The theoretical underpinning of phase separation as a form of self-organized pattern formation is
derived from the interactions between stones and needle ice, and the resulting velocity-concentration
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dependent movement. The movement of stones stems from the growth of needle ice where its height
enters into the evolution equation (S3.4) of stones. Here, we describe the height of ice needles with
H(r, t) at spatial location r and time t. The dynamics of the height field of ice needles can be
expressed as

∂H

∂t
= win − aSmH − rH +Dh∇2H. [S3.5]

Here, win describes the water input in the soil. The second term describes the inhibitory effect
of increasing stone cover on needle ice growth; a and m are positive empirical coefficients, and m
representing the sensitivity of ice growth inhibit by stone cover. We note that this relationship is
nonlinear, as shown in SI Appendix , Figure S12, and so take m = 2 for quadratic function here. The
parameter r is the specific rate of loss of H2O (both water and ice) due to evaporation, and Dh

is the diffusion coefficient describing the H2O transport process (both for ice and water) during a
freeze-thaw cycle. Finally, the time evolution of spatial concentration profiles of mobile stones, and
of the height of ice needles, were computed by numerically integrating the two partial differential
equations (S3.4) and (S3.5) presented in this study.

The time evolution of the spatial concentration profiles of mobile stones and of the height of
ice needles, as given by the two coupled partial differential equations (S3.4) and (S3.5) completely
represent our model in its present form, and these are solved below by linear stability analysis and
numerically integration.

S3.3. Derivation of effective diffusivity without needle ice interactions.For definiteness, our ex-
perimental data has revealed the velocity-concentration relationship in equation (S3.1) which is
significant with fitted coefficients on both exponential and hyperbolic functions (SI Appendix, Ta-
ble S2). The Akaike information criterion (AIC) test showed that they are slightly different and even
indistinguishable for the fitted curves (SI Appendix , Table S2). Note that we used the exponential
model because it is the simplest function of convenience in this study.

Based on the experimental relation of v(S) = v0 exp(−λS), where v0 is the speed of an isolated
stone, and λ > 0 controls the decay rate of speed with the increased local concentration. Neglecting
the direct influence of the height of ice needles on the stone speed, we have the following first
expression on effective diffusivity according to equation (S3.3):

De(S) = [(1− λS)D(S)]∇S =
[
γv2

0(1− λS)e−2λS
]
∇S [S3.6]

with D(S) = αv(S)2. Now, the full dynamics of equation (S3.4) is given by

∂S

∂t
= ∇

[
(1− λS)D(S)∇S − κ∇(∇2S)

]
= ∇2

[
G(S)− κ∇2S

]
(Model 1) [S3.7]

with G (S) = (2λS − 1)D(S)/4λ. The function G(S) is called the ‘chemical potential’, by analogy
with materials science phase separation. Mathematically, the concentration-dependent movement
can derive phase separation patterns starting from a uniform distribution when the free-energy
function density of equation (S3.7) switches from a single to a double-well shape or from a single
valley to a double-valley shape (SI Appendix , Figure S13B). Therefore, we can derive the free energy
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functional from Eq. (S3.7),

F(S) =
∫ [∫ {

G (S)− κ∇2S
}
dS
]
dr

=
∫ [∫ {

(2λS − 1)D (S)
4λ − κ∇2S

}
dS

]
dr

=
∫ [

SD (S)
4λ − κ

2 |∇S|
2
]
dr + C, [S3.8]

and C ∈ R is a constant (essentially irrelevant) new parameter arising from mathematical integration.

We can gain qualitative understanding of the phase-separation conditions that occur in Model
1 (i.e. Eq. S3.7) via using the free energy functional approach here. In particular, this approach
gives a mathematical explanation for the appearance of aggregation stone patterns when exist a
condition De(S) < 0 and for the appearance of dispersion stone patterns when the condition satisfies
De(S) > 0 ((see ref. 34) and SI Appendix Figure S13A). For Model 1, the free-energy F(S) from
equation (S3.8) is sketched in SI Appendix Figure S13B. There is a single attractive fixed point at
the equilibrium Seq = 1/2λ. Above a higher critical concentration Sc = 1/λ the diffusion coefficient
in the linear approximation changes sign.

The experimental velocity-concentration relation in equation (S3.1) with phase separation Eq.
(S3.7) (named as Model 1) indeed leads to spatially self-organized patterns resembling the spatial
patterns observed in laboratory experiments (SI Appendix , Figure S14 and Fig. 3 in the main text).

S3.4. Effect of the height of needle ice clusters on stones effective diffusivity.Our qualitative
experimental evidence shows that a positive interaction exists between the height of ice needle and
stones speeds (SI Appendix , Figure S2). More generally, this positive relation can be expressed as
vh(H) = f(H) and ∂f(H)

∂H
> 0. Here, we look at two scenarios of the specific vh(H) to elucidate that

this phase-separation physical process controls the patterned ground.

For simplicity, we assume that the height of ice needles has a linear positive effect on stone speed,
i.e. vh (H) = bH. As a model equation, we assume that this speed follows the simple relationship,
v (S,H) = vh (H) vs (S), i.e. v (S,H) = βHe−λS with β = bv0. This procedure allows us to analyze
the dynamics simple, characterized in the simplest cases by only two dimensionless parameters (β
and λ), that may help to explain the origin of self-organized pattern formation across a large class
of observed patterned ground in nature and laboratory. This involves a concentration-dependent
motility, giving rise to a phase separation that is then arrested at a stable state on a well-defined
characteristic length scale by the freeze-thaw cycles. The model presented here is intended to
capture only the early stages of the patterning process, and generates patterns that continually
coarsen, in contrast to observations. A similar phenomenon occurs in other systems where there
are long-range interactions, such as in block copolymers that only exhibit microphase separation at
long times. However, at short times, even these systems exhibit phase separations, although the
exponent describing the growing length scale is frequently found to be of order 1/4, at least when
the interface width is not very small with respect to the domain size (37). It is beyond the scope of
the present paper to model the full dynamics of the stone-ice needle interactions.
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Now, we have the effective diffusivity derived from equation (S3.3),

De(S,H) =
[
(1− λS)γβ2H2e−2λS

]
∇S + (γβ2HSe−2λS)∇H

= [(1− λS)D (S,H)]∇S +
(
γβ2HSe−2λS

)
∇H, (Model 2) [S3.9]

with D(S,H) = γβ2H2e−2λS. Hence, the phase separation should be existent in case of scenario
1 with vh (H) = bH. This has been confirmed by spatial numerical simulation with the effective
diffusivity Eq. (S3.9). The numerical simulation results are shown in SI Appendix , Figure S15 with
our use of periodic/zero flux boundary conditions.

S3.5. Pattern formation conditions of the phase separation models.Although the theory un-
derlying the variable coefficient partial differential equations is rather complicated, its practical
implementation is relatively straightforward with our chemical potential method here. Here, we
perform linear stability analysis of Model 1 and Model 2 to obtain the dispersion relation of the
patterned-state emergence at early times.

S3.5.1. Linear stability analysis of Model 1.For Model 1,

∂S

∂t
= ∇2(G(S)− κ∇2S), [S3.10]

with G(S) = 2λSD(S)−D(S)
4λ and D(S) = γv2

0e
−2λS > 0. Thus the stable points are solutions of

G(S) = 0, i.e. (2λS − 1)D(S)/4λ = 0. Since D(S) > 0, the fixed point is at Seq = 1/2λ, and
G′ (S) = D(S)(1− λS) > 0, when S < Sc. Any spatially uniform concentration field S0 is a steady
state of equation (S3.7), so we linearize about this as an initial condition. Thus, we set S = S0 + ϕ
where S0 > 0 is a constant concentration field that is a steady state solution of equation (S3.7), and
obtain the perturbation equation from Taylor series around S0 and keeping the linear order:

∂ϕ

∂t
= ∇2

[
G(S0) +G′(S0)ϕ+O(ϕ2)− κ∇2ϕ

]
= ∇2[D(S0)(1− λS0)ϕ− κ∇2ϕ]. [S3.11]

Note that in the long wavelength limit, we can neglect ∇2 · ∇2 terms here and write equation (S3.11)
as

∂ϕ

∂t
= Deff∇2ϕ [S3.12]

with Deff = S(S0)(1− λS0). Note that only for S0 > 1/λ ≡ Sc0 does negative diffusion to occur (see
SI Appendix Figure S13), usually a hallmark of spinodal decomposition. Nevertheless, the steady
state solution is linearly unstable for a band of wavevectors, as shown by expanding the perturbation
ϕ in Fourier space:

ϕ = ϕk
∑

eσ(q)t+iq~r. [S3.13]

Here, q > 0 is wave number, i2 = −1. Substituting equation (S3.13) into equation (S3.12), we obtain
the dispersion relation:

σ (q) = D(S0)(λS0 − 1)q2 − κq4. [S3.14]
Linear instability occurs when λ > 1/S0 and R(σ(q)) > 0 for pattern formation as was shown in
Figure S16.
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In summary, model 1 can generate phase separation patterns via a long-wavelength linear instability
when G′(S0) < 0, and the G′(S0) = 0 is the critical condition (spinodal instability conditions) for
Model 1. The limits of stability from the linear analysis agree with spinodal-decomposition curves
through direct numerical simulation, as shown in the main text of Fig. 3A (Bottom) in the main
text.

S3.5.2. Linear stability analysis of Model 2.Model 2 differs from Model 1 in that it does not possess a
family of steady state solutions for any initial stone concentration. Thus, we must expand about the
steady state (S0, H0) of Model 2, given by should satisfy the following equations{

win − aS0
2H0 − rH0 = 0

∇ ·De(S0, H0) = 0. [S3.15]

One solution is that H0 = win
aS2

0+r , S0 = const, and De (S0, H0) = 0. Let S = S0 + δS, and
H = H0 + δH, then model 2 reads ∂t(δS) = ∇ · φ1 (S0, H0)∇2

(
δS
)
φ2 + (S0, H0)∇2

(
δH

)
− κ∇4

(
δS
)

∂t
(
δH

)
= −aS2

0 δH − 2aS0H0δ̄S − r ¯δH +Dh∇2
(
δH

)
.

[S3.16]

Here, φ1 (S,H) = γβ2H2(1−λS)e−2λS, and φ2 (S,H) = γβ2HSe−2λS. Now we expand the equations
(S3.16) in Fourier space, i.e. (

δ̂S

δ̂H

)
∝ eiqx+σ(q)t.

The equations (S3.16) read now as

σ

(
δ̂S

δ̂H

)
=

=M︷ ︸︸ ︷(
−φ1 (S0, H0) q2 − κq4 −φ2(S0, H0)q2

−2aS0H0 −aS2
0 − r −Dhq

2

) (
δ̂S

δ̂H

)
≡M

(
δ̂S

δ̂H

)
. [S3.17]

Then we obtain the eigenvalues of Model 2 with the matrix ofM from the above equation (S3.17).
The linear instability is obtained when R(σ(k)) of matrix M is positive. For long-wavelength
instability, we can numerically calculate the intervals of the positive values of R(σ(q)) on the
(S0, λ)-space was shown in SI AppendixFigure S17 and Fig. 3B (Bottom) in the main text. Both the
numerical simulations and linear stability analysis qualitatively predict a coincident region where
the phase separation patterns appear. One may see the deviation of the right-boundary spinodal
curve caused by the limitation of the time scale for our numerical simulation.

Note that Model 2 does not possess a ‘chemical potential’ like Model 1, so is not manifestly of the
phase separation type. In future work, a more refined analysis of the coupling between ice crystals
and stone concentration will be provided. Nevertheless, Model 2 demonstrates a point of principle
that there can be pattern-forming instabilities in the coupled stone-ice needle system.

S3.6. Modelling phase separation – a summary. Spatial self-organization theory often predicts
the macroscopic scale behavior resulting from system-specific microscopic rules and interactions.
Commonly, the system behaviors at coarse-grained level are difficult intuitively to obtain from these
simple rules at individual levels, named as emergent properties. Here, we follow such an approach in
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previous study (34, 38), offering a description on scales intermediate between microscopic dynamics
of stones and the macroscopic scale of the self-organized patterned ground in the laboratory and
field. Unlike the widely studied Turing mechanisms (39, 40) for self-organized patterning, we
proposed the phase separation process, based on local concentration-dependent feedback, whereas
the self-organized Turing patterns are stationary for spatial pattern scales and non-conservation on
particles. The models will help us to identify a very general mechanism that explains the origin of
pattern formation across a large class of experiments and field observations in nature.

As described in Figure 3 in the main text, our models reproduce patterns similar to the observed
in self-organized stone patterns observed in our experiments. However, there are some unresolved
issues. Model 1, which ignores the ice needle-stone feedback, predicts that the pattern formation
process resembles phase separation in materials science, with the governing equation being of the
form of the Cahn-Hilliard equation. Indeed simulations show the same early time coarsening behavior
as experiments (Figure 5 in the main text), including data collapse and the tail of the structure
functions. The way in which the characteristic length scale grows with time is empirically dependent
on whether the ground is level or sloping, but the model is not capable of making this distinction. It
is possible that the scaling exponents reflect the interface structure, as is known to occur in other
systems where there is a saturation in the growth process, such as block copolymers (37). Thus, the
process by which the pattern scale saturates at long times is not captured by our current models.

One of our key findings is that ultimate patterns produced by the phase separation process
depend on the initial stone concentration. The stone island, labyrinthine, and circle patterns can
generate from lower stone concentration to higher stone concentration in spinodal phase separation.
This phase diagram structure also agrees with the laboratory evidence from low to high stone
concentration (Figure 3 B–D in the main text).

The basic phase separation mechanism is not limited to the present example. In our experimental
system, the phase separation process induced by differential needle ice height between high and
low stone concentration regions, results in stone separation and accumulation, self-forming islands,
labyrinths, circles on level ground and stripes on sloping ground. However, needle ice activity is a
special case which produces small-scale patterned ground and most large-scale patterned ground
formation is induced by differential frost heave of ground ice or segregated ice in the active layer
(28, 29). In such a case, our robust model can also provide a potential explanation of large-scale
patterned ground by building a relationship between stone concentration with frost heave induced by
segregated ice. Phase separation as a pattern forming mechanism has been successful in biology and
ecology (38, 41, 42), and we hope that our experimental and theoretical framework here extends this
understanding to the realm of geomorphology realm to the phase separation principle in the future.

S4. Robustness of the different stone speed forms
Our experimental data suggest that other speed functions may also be a reasonable choice as listed
in Table S2. Specifically, the exponential and quadratic functions are almost indistinguishable
when fitting the relation between local coverage and movement speed. For the sake of simplicity,
and without loss of generality, we have chosen an exponential relation for both models. A parallel
analysis was implemented following the present framework for different specific formulas. This
showed that similar phase separation patterns are produced when we replace the exponential
function with a quadratic function as suggested, in Table S2. In this appendix, in Figure S18,

10 of 36 Anyuan Li, Norikazu Matsuoka, Fujun Niu, et al



we show an example of self-organized patterns resulting from the proposed phase separation
model 1 and with the quadratic function of Table S2. We have deposited the codes in GitHub
(https://github.com/liuqx315/Phase-separation-patterned-ground) for the reader to further explore.
Here, the phase separation model with a two-scale feedback leads to the stationary Turing-like
patterns, as was shown in a previous study on mussel beds ecosystems (31). In contrast, our data
suggest rejecting that the hypothesis of a two-scale feedback can be rejected (see Figure S6).

S5. Supporting Information Tables

Table S1. List and description of all the experiments conducted in the Earth Surface Processes Labo-

ratory (University of Tsukuba, Japan).

Run
SZ

(mm)
Cover/NS

RT

(h)

Slope

(◦)

HIN

Minimum

HIN

Maximum

Level ground 1 4 – 8 20%(648) 360 0 14.5± 0.1 40.0± 0.1

2 4 – 8 30%(912) 360 0 16.7± 0.1 39.0± 0.1

3 4 – 8 40%(1226) 360 0 26.9± 0.1 41.5± 0.1

4 4 – 8 60%(1916) 360 0 14.7± 0.1 44.3± 0.1

5 4 – 8 80%(2597) 360 0 19.4± 0.1 46.6± 0.1

Sloping ground 6 4 – 8 20%(684) 240 5 11.8± 0.1 24.7± 0.1

7 4 – 8 20%(684) 360 7 16.7± 0.1 25.4± 0.1

8 4 – 8 20%(684) 240 9 13.7± 0.1 32.2± 0.1

9 4 – 8 20%(684) 240 11 13.8± 0.1 25.0± 0.1

10 8 – 16 20%(586) 240 7 11.5± 0.1 25.1± 0.1

Note: SZ=Stone Size, NS=Numbers of Stone, RT=Run Time, HIN=Height of ice needles.
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Table S2. Model selection of the experimental relationships between stone speed and local stone

concentration

Mathematical formula AIC Parameters p-value N

Formula 1: Exponential function

v(ρ) = v0 exp(−λρ)
7243.1 v0 = 2.02, λ = 0.85 0.0001 1584

Formula 2: Quadratic function

v(ρ) = p0 − p1ρ+ p2ρ2
7242.6 p0 = 2.09, p1 = 2.47

p2 = 1.73
0.0001 1584

Formula 3: Two scale-feedbackfunction

v(ρ) = 1/[p0 + p1CS(ρ)− p2CL(ρ)]
-3164.1 p0 = 0.55, p1 = 0.61

p2 = 0.46
0.01 1584

Note: CS(ρ) and CL(ρ) represent the stone concentration of the movement stone at the small and
large scale, respectively.
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Table S3. Definitions and interpretation of variables and parameters in phase separation models

Symbol Value Unit Definition and Interpretation

v0 2.02 mm/h Maximum stone speed of an isolated stone

λ 3.0∗ – Decay rate of stone speed with increased neighbor concentration

κ 0.15 –
Tension coefficient of gradient energy controls the length of

transition regions between two phases

win 0.1 ∼ 0.5 g/h Input of the water

a 0.2 g/h Inhibited coefficient by stone concentration

Dh 5 cm2/h
Diffusion coefficient describing the H2O (both water and ice)

transport process during a freeze-thaw cycle

β 0.2 – Positive feedback coefficient of needle ice on stone speed

r 0.01 1/h Specific rate of loss of the H2O (both water and ice) due to

evaporation during a freeze-thaw cycle

∗A similar sorted patterned ground also gets at 0.85 of experimental data, but for different ranges
for stone concentrations (see Figure 3 in the main text for details). See the online codes for the
different phase separation patterns with the various parameter values listed here.

Anyuan Li, Norikazu Matsuoka, Fujun Niu, et al 13 of 36



Table S4. Potential processes and field evidence on the diversity of patterned ground in nature.

Form Processes assumed
to be responsible

Based on Location (country) Reference

Circles,

stripes

Needle ice growth,

ice lens,

Wind action,

convection cells

Field observation Marion Island (5, 6)

Circles / Field observation

Barton Peninsula, King

George Island,

Antarctica (62°S)

(7)

Circles
Rapid frost-

sorting
Field observation Jotunheimen, Norway (8)

Circles

Frost plug,

Coalescence of

plugs

Field observation
Devon Island, Nunavut,

Canada
(9)

Circles
circulation

mechanisms
Field observation

Northern Billefjorden

area, central Svalbard
(3)

Circles Soil-circulation
Field

obeservation

Resolute area,

Cornwallis Island,

Canadian High Arctic

(10)

Circles
Differential frost

heave
Field observation Central Alaska (11)

Circles,

stripes,

labyrinths

Sorting by deep

seasonal

freezing

Field observation Lesotho-South Africa (12)

Circles,

labyrinths

Differential frost

heave, Lateral

sorting, squeezing,

convective soil

movements

Field observation,

Numerical simulation

Kvadehuksletta, western

Spitsbergen
(29, 43)

Polygons,

nets

Differential

frost-heave

action, frost

cracking

Field observation.
Krkonoše Mountains,

Czech Republic
(13, 14)
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Table S4. (continued)

Form Processes assumed
to be responsible

Based on Location (country) Reference

Polygons,

stripes

Frost-jacking,

differential frost

heave

Field observation La Mortice, French Alps (2)

Stripes /
Field

observation
Jotunheimen, Norway (15)

Stripes

Mechanical

weathering,

frost shattering

Differential frost

heave

Field observation

Ledenica pod Hrusivo

ice cave, western

Slovenia

(16)

Stripes
Needle-ice

growth

Field observation,

Numerical

simulation

Mauna Kea, Hawaii,

USA
(44)

Stripes

Frost heaving,

sorting,

dynamics of the

flux of coarse

sediment

Field observation
Cordillera Real, 16°S

(Bolivia)
(17)

Stripes Differential frost heave Field observation
Lake District. Northern

England
(18, 19)

Stripes
Differential frost

heave

Field observation

and lab experiment

Upper Engadin, Swiss

Alps
(20)

Stripes,

nets

Differential frost

heave

Field observation

and Laboratory
Colorado alpine region (21)

Nets

needle-ice

growth and frost

heave

Field observation

Fláajökull (Southeast

Iceland) and Elisbreen

(Northwest Spitsbergen)

(22)

Anyuan Li, Norikazu Matsuoka, Fujun Niu, et al 15 of 36



S6. Supporting Information Figures

Fig. S1. Experimental set-up. (A) Schematic of experimental set-up. (B) Controlling tempera-
ture in room during one freeze-thaw cycle. (C) Soil samples used in our experiment from field site
in University of Tsukuba, Japan. (D) and (E) Top and side view of experimental arena.
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Fig. S2. Experimental measurements of relationship between needle ice activity and
stone transportation. (A) A snapshot of needle ice activity at t = 6.5 h with 30% stone cover in
the first freeze-thaw cycle. (B) and (C) Needle ice growth within soil domain (∼ 4 mm) (B) and
stone domain (∼ 2 mm) (C) at t = 366.5 h (31st freeze-thaw cycle) with 40% stone cover. (D) and
(E) Observed/measurement straight needle ice height (D) and curved needle ice (E) at t = 366.5 h
(31st freeze-thaw cycle) with 40% stone cover. (F) Schematic diagram of stone transport by needle
ice and negative feedback between stone concentration and needle ice height (Movie S4). (G) Stone
separation and aggregation by needle ice during freeze-thaw cycles. N represent the number of the
freeze-thaw cycles.
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Fig. S3. Soil surface deformation, air and soil temperature, volumetric water content
conditions during whole experimental period and 16th cycle in experiment with 40%
stone cover. (A to C) Soil surface deformation (A), air and soil temperature (B) and volumetric
water condition (C) in experiment with 40% stone cover during 30 freeze-thaw cycles recorded with
two data logging systems. (D to F) Soil surface deformation (D), air and soil temperature (E) and
volumetric water condition (F) in experiment with 40% stone cover during 16th freeze-thaw cycle.
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Fig. S4. Patterned ground evolution in the experiments. Tracking all surface stone
locations at five freeze-thaw cycle intervals. (A to C) Diverse patterns resembling stone-free
islands (A), stone polygons (B), and circles (C) with 20%, 40%, and 60% stone cover on level ground,
respectively. (D) Elongated, stripes-like patterns with 20% stone cover on 7◦ sloping ground (ref.
24).
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Fig. S5. Stone motion in the experiments. (A to F) Initial and final stone positions in
experiments with 20% (A), 30% (B) and 60% (C) stone cover on level ground and 20% stone cover
on a ground surface inclined 5◦ (D), 7◦ (E) and 9◦ (F) (ref. 24). Red dots represent 20 stones selected
for trajectory tracking. Yellow and green colors indicate initial and final stone positions. (G to L)
stone trajectories corresponding to (A to F) panels respectively, illustrating characteristic movement
toward stone aggregations and clusters, as well as downslope. Color bars represent the time (hours)
progression in lab experiments.
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Fig. S6. The coefficient of movement speed with increased spatial scales from 12 mm
to 54 mm in the experiments. (A to D) Multi-scale matrix of correlation coefficient of increased
spatial scales from 12 mm to 54 mm in experiments of 20% (A), 30% (B), 40% (C) and 60% (D)
stone cover on level ground. (E to H) Multi-scale matrix of correlation coefficient of spatial scales
increased spatial scales from 12 mm to 54 mm in experiments of 20% stone cover on sloping ground
with 5◦ (E), 7◦ (F), 9◦ (G), 11◦ (H) slope gradient. The results come from general linear model with
R package (45, 46).
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Fig. S7. Spatial pattern development starting from a uniform triple concentration (80%, 40%, 10%
from edge to inward direction) through 20 freeze-thaw cycles. The numbers within each panel depict
the ith freeze-thaw cycles.

22 of 36 Anyuan Li, Norikazu Matsuoka, Fujun Niu, et al



Fig. S8. 2D Fourier transforms in image processing. (A) Initial image and images of stone
patterns in experiment with 30% stone cover after 3, 10, 30 freeze thaw cycles from top to bottom
rows (N represent numbers of freeze-thaw cycles). (B) and (C) Fourier spectrum (B) and local
pattern wavelength (C) corresponding to column of panel (A), respectively. The global mean
wavelength ¯̀ was calculated by average of peak values of the local pattern wavelengths in rows and
columns.

Anyuan Li, Norikazu Matsuoka, Fujun Niu, et al 23 of 36



Fig. S9. Overlapping of stones with freeze-thaw cycles. (A) Changes of four coverage rates
on the level ground scenario. Note that at the 20% case, the declined coverage rate doesn’t attribute
to overlapping, but stones mixed with soil color. (B) Changes of three coverage rates on the sloping
ground cases.
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Fig. S10. Feedback effect of needle ice on the sorting pattern formation. The phase
diagram for the model 2 depicts patterns formation with stone concentration and feedback strength
(β) determining the regions in which the phase separation switches from the one-phase to two-phase
regimes along environmental gradient. The system does not undergo phase separation below the
critical strength (βc) for the high stone concentration. The simulation was obtained from the
parameters that were shown in Fig. 3B in main text but λ = 3.0, and win = 0.2.
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Fig. S11. Scaling behavior of coarsening patterns of each experimental evolution on the sloping
ground (A) and level ground (B), respectively. They display a similar power-law exponent associated
with a slight deviation. See Table 1 for the detailed statistical properties.
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Fig. S12. Inverse nonlinear relationship between needle ice height and stone weight. The lines are
trends, and shaded area indicate the 95% CI of the fixed effect.
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Fig. S13. Two analytical plots of effective diffusivity De(S) (A) and free-energy density of F(S) (B)
on our Model 1 (i.e. Eq. (S3.8)) with the experimental relationship of v(S) = v0e

−λS with parameters
λ = 0.85, d = 2, τ = 1.0, and v0 = 2.02. Dashed lines describe zeros as a reference for comparison
for reasonable input status. The dots represent two statuses of low (or high) concentration driven
by the phase separation processes.

28 of 36 Anyuan Li, Norikazu Matsuoka, Fujun Niu, et al



A B

Fig. S14. Two snapshots of simulation results on model 1 with v (S) = v0e
−λS for different initial

stone concentration at 0.5 (A) and 0.85 (B) respectively at t = 5000. The numerical simulations
were implemented on periodic boundary conditions with parameters λ = 3.0, d = 2, τ = 1.0, and
v0 = 2.02. Colorbars represent the stone concentrations with unit g/cm2.
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A B C

Fig. S15. (A) phase diagram on the (S0, λ) plane for pattern formation based on Model 2 with the
effective diffusivity Eq. (S3.9). (B, C) Two typical patterns of the numerical simulation for various
stone concentrations with parameters λ = 3.0, S0 = 0.2 (B) and λ = 3.0, S0 = 0.4 (C). The other
parameters are listed as SI Appendix , Table S3. Colorbars represent stone concentrations with unit
g/cm2 for panels. Note that the right-boundary spinodal line of the panel (A) depends on the time
scales of the model simulation.

30 of 36 Anyuan Li, Norikazu Matsuoka, Fujun Niu, et al



0.1 0.2 0.5 1.2 2.7 6.1
0.3

1.7

3.1

4.5

5.9

7.3

   0

A B

R(
δ(

q)
)>
0

R(
δ(

q)
)<
0

Numerical simulation Theoretical prediction

Fig. S16. Instability region of model 1 with linear stability analysis and numerical
simulations. (A) Numerical simulation of phase separation Model 1. (B) The real part R(σ(q)) of
the spatial eigenvalues in Eq. (S3.14) with γ = 0.5, (β = 0.5v0, v0 = 2.02, and κ = 0.15. Color bar:
yellow region represents R (σ (q)) > 0, and blue R (σ (q)) < 0.
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Fig. S17. Instability region of Model 2 with linear stability analysis and numerical
simulations. (A) Numerical simulation of phase separation Model 2. (B) The real part R(σ(q)) of
the spatial eigenvalues of Eq. (S3.17) with γ = 0.5, β = 0.2, v0 = 2.02, and κ = 0.05. Color bar:
yellow region represents more than 0, but blue less than 0.
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Fig. S18. Results of self-organized patterns with the quadratic function of stone speed, v(ρ) =
p0 − p1ρ + p2ρ

2. Snapshots show the spatial cluster at t = 20000 for Model 1 (Top) and Model 2
(Bottom). Parameter values are listed in Table S2, but for p1 = 3.8. The codes are available from
the GitHub (https://github.com/liuqx315/Phase-separation-patterned-ground).
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S7. Supporting Information Movies
Movie S1. Movie of a stone pattern evolution produced by needle ice growth and
decay at 30% stone cover on level ground (experiment 2, SI Appendix, Table S1) from
top view. Overview of the pattern evolution with time, showing stones divergence,
convergence, self-organization in pattern formation.

Movie S2. Movie of a stone pattern evolution produced by needle ice growth and
decay at 40% stone cover on level ground (experiment 3, SI Appendix, Table S1) from
top view. Overview of the pattern evolution with time, showing stones divergence,
convergence, self-organization in pattern formation.

Movie S3. Movie of a stone pattern evolution produced by needle ice growth and
decay at 60% stone cover on level ground (experiment 4, SI Appendix, Table S1) from
top view. Overview of the pattern evolution with time, showing stones divergence,
convergence, self-organization in pattern formation.

Movie S4. Movie of a stone pattern evolution during 15th freeze-thaw cycle at 40%
stone cover on level ground (experiment 3, SI Appendix, Table S1) from side view.
Overview of stone transport by needle ice growth and decay.

Movie S5. Movie of a pattern evolution arising from the phase separation model
1 of the Fig. 3A on the (S0, λ)-space, where the other parameters were listed in SI
Appendix, Table S3.

Movie S6. Movie of a pattern evolution arising from the phase separation model
2 of the Fig. 3B on the (S0, λ)-space, where the other parameters were listed in SI
Appendix, Table S3.

Movie S7. Movie of a stone pattern evolution produced by needle ice growth and
decay at 80% stone cover on level ground (experiment 5, SI Appendix, Table S1) from
top view. Overview of the pattern evolution with time, showing stones divergence,
convergence, self-organization in pattern formation.

Movie S8. Movie of a stone pattern evolution produced by needle ice growth and
decay at triple stone cover on level ground from top view. Overview of the pattern evo-
lution with time, showing stones divergence, convergence, self-organization in pattern
formation.

Movie S9. Movie of stone lift and transport by needle ice growth and decay at triple
stone cover on level ground during first freeze-thaw cycle from side view.
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