


LETTERS
PUBLISHED ONLINE: 16 NOVEMBER 2015 | DOI: 10.1038/NPHYS3548

Ecological collapse and the emergence of
travelling waves at the onset of shear turbulence
Hong-Yan Shih, Tsung-Lin Hsieh and Nigel Goldenfeld*
The mechanisms and universality class underlying the
remarkable phenomena at the transition to turbulence remain
a puzzle 130 years after their discovery1. Near the onset to
turbulence in pipes1, plane Poiseuille flow2 and Taylor–Couette
flow3, transient turbulent regions decay either directly4 or
through splitting5–8, with characteristic timescales that exhibit
a super-exponential dependence on Reynolds number9,10.
The statistical behaviour is thought to be related to directed
percolation (DP; refs 6,11–13). Attempts to understand
transitional turbulence dynamically invoke periodic orbits and
streamwise vortices14–19, the dynamics of long-lived chaotic
transients20, and model equations based on analogies to
excitable media21. Here we report direct numerical simulations
of transitional pipe flow, showing that a zonal flow emerges at
large scales, activated by anisotropic turbulent fluctuations;
in turn, the zonal flow suppresses the small-scale turbulence
leading to stochastic predator–prey dynamics. We show that
this ecological model of transitional turbulence, which is
asymptotically equivalent to DP at the transition22, reproduces
the lifetime statistics and phenomenology of pipe flow
experiments. Our work demonstrates that a fluid on the edge
of turbulence exhibits the same transitional scaling behaviour
as a predator–prey ecosystem on the edge of extinction, and
establishes a precise connectionwith theDPuniversality class.

Turbulent fluids are ubiquitous in nature, arising for sufficiently
large characteristic speeds U , depending on the kinematic viscosity
ν and a characteristic system scale, such as the diameter of a pipe
D. Turbulent flows are complex, stochastic, and unpredictable in
detail, but transition at lower velocities to a laminar flow, which is
simple, deterministic and predictable. This transition is controlled
by the dimensionless parameter known as the Reynolds number,
which in the pipe geometry of interest here is given by Re≡UD/ν,
and occurs in the range 1,700.Re. 2,300. The laminar-turbulence
transition has presented a challenge to experiment and theory since
Osborne Reynolds’ original observation of intermittent ‘flashes’
of turbulence1.

To explore this transitional regime, we have performed direct
numerical simulations of the Navier–Stokes equations in a pipe of
length L= 10D, using the open-source code ‘Open Pipe Flow’23,
as described in Supplementary Methods. The Reynolds number at
which transitional turbulence occurs is higher for short pipes23,
and the simulations reported here for L= 10D were performed at
a nominal value Re= 2,600, which we estimate to be equivalent
to Re. 2,200 in long pipe data7 based on estimates of when puff
decay transitions to puff splitting.We confirmed that our results did
not qualitatively change for a longer pipe with L=20D. We denote
the time-dependent velocity deviation from the Hagen–Poiseuille
flow by u= (uz ,uθ ,ur). Because we were interested in transitional
behaviour, we looked for a decomposition2,6,24,25 of large-scalemodes

that would indicate some form of collective behaviour, as well
as small-scale modes that would be representative of turbulent
dynamics. In particular, we report here the behaviour of the velocity
field (uz ,uθ ,ur), where the bar denotes average over z and θ , and
ur=0. We refer to this as the zonal flow. In Fourier space, the zonal
flow is given by ũ(k=0,m=0, r), where k is the axial wavenumber
and m is the azimuthal wavenumber, r is the real space radial
coordinate and the tilde denotes Fourier transform in the θ and
z directions only. Turbulence was represented by short-wavelength
modes, whose energy is ET(t)≡(1/2)

∑
|k|≥1,|m|≥1

∫
|ũ(k,m, r)|2 dV .

Shown in Fig. 1a is a time series for the energy
EZF(t)≡(1/2)

∫
|ũ(0,0, r)|2 dV of the zonal flow, compared with the

energy ET(t) of the turbulent energy. The curves show clear persis-
tent oscillatory behaviour, modulated by long-wavelength stochas-
ticity, as shown in the phase portrait of Fig. 1b. In Fig. 1c, we have
calculated the phase shift between the turbulence and zonal flows,
with the result that the turbulent energy leads the zonal flow energy
by∼π/2. This suggests that these oscillations can be interpreted as
a time-series resulting from activator–inhibitor dynamics, such as
occurs in a predator–prey ecosystem. Predator–prey ecosystems are
characterized by the following behaviour: the ‘prey’ mode activates
the ‘predator’ mode, which then grows in abundance. At the same
time, the growing predator mode begins to inhibit the prey mode.
The inhibition of the prey mode starves the predator mode, and it
too becomes inhibited. The inhibition of the predator mode allows
the prey mode to re-activate, and the population cycle begins again.

The flow configuration for the predatormode is shown in Fig. 1d,
and consists of a series of azimuthally symmetric modes with
direction reversals as a function of radius r . Such banded shear
flows are known as zonal flows and are of special significance in
plasma physics, astrophysical and geophysical flows, owing to their
role in regulating turbulence26. The purely azimuthal component of
the zonal flow, denoted by uθ (r), is spatially uniform in z , and the
lack of a radial component means that it is not driven by pressure
gradients. Thus, it can exist only as a result of nonlinear interactions
with turbulent modes. In this sense, it is a collective mode, one with
special significance for transitional turbulence.

The simplest way for such an azimuthal shear flow to couple to
turbulent fluctuations is through the Reynolds stress τ : however,
a uniform Reynolds stress cannot drive a shear flow, so the first
symmetry-allowed possibility is the radial gradient of the Reynolds
stress26, as expressed in the Reynolds momentum equation. Thus,
to probe the dynamics that govern the emergence of the zonal
flow, we have calculated the time-averaged radial gradient of the
instantaneous Reynolds stress, τ ≡ u′

θ
u′r , where u′(z ,θ , r)≡u−u,

and show in Fig. 1f the 4.5-time-unit-running-mean time series
of −∂tuθ and the radial gradient ∂rτ . Both quantities have been
averaged over 0 ≤ z ≤ L, 0 ≤ θ ≤ 2π and R0 ≤ r < R, where
R=D/2, R0 = 0.641R, and the resulting time series are clearly
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Figure 1 | Predator–prey oscillations in transitional turbulent pipe flow at
nominal Re=2,600, for a pipe of radius R=D/2. a, Energy versus time for
the zonal flow (orange) and turbulent modes (green). b, Phase portrait of
the zonal flow and turbulent modes as a function of time, with colour
indicating the earliest time in dark blue progressing to the latest time in
light green. c, Phase shift between the turbulent and zonal flow modes as a
function of frequency, showing that the turbulence leads the zonal flow by
π/2, consistent with predator–prey dynamics. The phase shift
θ(ω)= tan−1 (Im[C̃(ω)]/Re[C̃(ω)]) and is shifted to be positive, where
C̃(ω) is the Fourier transform of the correlation function between the
turbulence and the zonal flow in a. The red line corresponds to the
dominant frequency in the power spectrum. The phase shift near small ω is
scatter due to the finite time duration of the time series. d, Velocity field
configuration of the zonal flow mode u. The colour bar indicates the value
of uz. e, Snapshot of the Reynolds stress gradient and zonal flow time
derivative as functions of r. f, Reynolds stress gradient and zonal flow time
derivative as functions of time. The agreement shows that zonal flow
dynamics is driven by the radial gradient of the Reynolds stress.

highly correlated. In general, it is the case that zonal flows are
driven by statistical anisotropy in turbulence, but are themselves
an isotropizing influence on the turbulence through their coupling
to the Reynolds stress27–29. The fact that turbulence anisotropy
activates the zonal flow, and that zonal flow inhibits the turbulence,
is responsible for the predator–prey oscillations observed in the
numerical simulations.

These numerical results suggest that the large-scale zonal flow
and the small-scale turbulence are necessary, and perhaps even
sufficient components of an effective coarse-grained description of
transitional turbulence in the spirit of Landau theory. Following the
usual logic of themodern theory of phase transitions30, we construct
the effective theory from symmetry principles alone, as there are no
small parameters with which to perform a systematic derivation. If
correct, this effective predator–prey theory should undergo spatio-
temporal fluctuations whose functional form matches the observa-
tions for the lifetime and splitting time of turbulent puffs in a pipe.

The simplest system that corresponds to our direct numerical
simulations of the Navier–Stokes equations has three trophic levels:
nutrient (E), Prey (B) and Predator (A), which correspond in the
fluid system to laminar flow, turbulence and zonal flow respectively.
The interactions between individual representatives of these levels
are given by the following reactions:

Ai
dA
−→Ei, Bi

dB
−→Ei, Ai+Bj

p
−→
〈ij〉

Ai+Aj, Bi+Ej
b
−→
〈ij〉

Bi+Bj,

Bi
m
−→Ai, Ai+Ej

DA
−→
〈ij〉

Ei+Aj, Bi+Ej
DB
−→
〈ij〉

Ei+Bj (1)

where dA and dB are the death rates of A and B, p is the predation
rate, b is the prey birth rate due to consumption of nutrient,
〈ij〉 denotes hopping to nearest neighbour sites, and DA and DB
are the nearest-neighbour hopping rate for predator and prey
respectively, assumed for simplicity here to be the same value DAB
for predator and prey. The ‘mutation’ term (B→A) is symmetry-
allowed and has the interesting consequence that the diagram of the
predator–prey model matches that of pipe transitional turbulence
(Supplementary Methods).

We simulated this predator–prey model, using methods de-
scribed in Supplementary Methods, in a thin two-dimensional strip
on a 401×11 lattice. The control parameter is the prey birth rate b.
When b is small enough, the population is metastable, and cannot
sustain itself, decaying with a finite lifetime τ d(b). As b increases,
the lifetime of the population increases rapidly: in particular the
prey lifetime increases rapidly with b. At large enough values of b,
the decay of the initial population is not observed, but instead the
initially localized population splits after a time τ s(b), spreading out-
wards and spontaneously splitting into multiple clusters, as shown
in the space–time plot of clusters of prey of Fig. 2a.

To quantify these observations, we have measured both the
lifetime of population clusters in the metastable region and
their splitting time using a procedure directly following that of
the turbulence experiments and simulations7, and described in
Supplementary Methods. We comment that both timescales involve
implicitly measurements of quantities that exceed a given threshold,
and thus it is natural that the results are found to conform to extreme
value statistics12,31.

In Fig. 2a we show the phenomenology of the dynamics of initial
clusters of prey, corresponding to the predator–prey analogue for the
experiments in pipe flow which followed the dynamics of an initial
puff of turbulence injected into the flow4. Depending on the prey
birth rate, the cluster decays either homogeneously or by splitting,
precisely mimicking the behaviour of turbulent puffs as a function
of Reynolds number. The extraction from data of decay times is
described in Supplementary Methods. In Fig. 2b is shown the semi-
log plot of lifetime for both decay and splitting as a function of prey
birth rate, the upward curvature indicative of super-exponential
behaviour. The inset to Fig. 2b shows a double exponential plot of
puff lifetime and splitting time versus prey birth rate, the straight
line being the fit to the functional form indicated in the caption.
These figures indicate a remarkable similarity to the corresponding
plots obtained for transitional pipe turbulence in both experiments4
and direct numerical simulations7, and demonstrate conclusively
that experimental observations are well captured by an effective
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Figure 2 | Stochastic predator–prey model reproduces the
phenomenology of transitional pipe turbulence. Lifetime and splitting time
of clusters of prey are memoryless processes and obey super-exponential
statistics as a function of prey birth rate. To compare with the
experiments4, predator–prey dynamics are performed in a two-dimensional
pipe geometry as described in the text. a, World line of clusters of prey
splitting to form predator–prey travelling waves. The colour measures the
local density of prey, corresponding to the intensity of turbulence in pipe
flow. In the simulation, the dimensionless parameters are
DAB=0.1,b=0.1,p=0.2,dA=0.01,dB=0.01 and m=0.001. In the model
simulated, di�usion is isotropic, not biased as would be the case
corresponding to a mean flow, where the clusters will accumulate at large
times with a well-defined separation set by the depletion zone of nutrient
behind each predator–prey travelling wave. b, Log lifetime of prey cluster
and splitting time as a function of prey birth rate. The upward curvature
signifies super-exponential behaviour. The parameters are
DAB=0.01,p=0.1,dA=0.015,dB=0.025 and m=0.001. Inset: Double log
lifetime versus prey birth rate, showing the fit to the following functional
forms: the dashed curve is given by τ d/τ0=exp(exp(46.539b−0.731)),
and the solid curve is given by τ s/τ0=exp(exp(−31.148b−3.141)).

two-fluid model of pipe flow turbulence with predator–prey inter-
actions between the zonal flow and the small scale turbulence.

Our simulations show that the predator–prey model expressed
by equation (1) exhibits a rich phase diagram that captures the
main features observed in transitional turbulence in pipes. We can
understand the qualitative features of the phase diagram from linear
stability analysis of the mean field solution of the predator–prey
equations22. Near the transition, the solutions are linearly stable, all
eigenvalues are real and there are no spatial-temporal oscillations.
But for higher values of b, the eigenvalues develop an imaginary part,
a necessary condition for the breakdown of spatially homogeneous
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Figure 3 | Schematic phase diagram for transitional pipe turbulence as a
function of Reynolds number compared with the phase diagram for
predator–prey dynamics as a function of prey birth rate. For each phase is
shown a typical flow or predator–prey configuration, indicating the
similarity between the turbulent pipe and ecosystem dynamics.

prey domains into periodic travelling wave states32. The phase
diagram is sketched in Fig. 3, along with the corresponding
phase diagram for transitional pipe turbulence as determined
by experiment. The phenomenology of the predator–prey system
mirrors that of turbulent pipe flow.

To determine the universality class of the non-equilibrium phase
transition from laminar to turbulent flow, we use the two-fluid
predator–prey mode in equation (1). Near the transition to prey
extinction, the prey population is very small and no predator can
survive, and thus equation (1) simplifies to

Bi
dB
−→Ei, Bi+Ej

b
−→
〈ij〉

Bi+Bj, Bi+Ej
DAB
−→
〈ij〉

Ei+Bj (2)

These equations are exactly those of the reaction-diffusionmodel for
directed percolation33. The argument here is heuristic but the result
is correct and can be obtained systematically from statistical field
theory techniques, as described in Supplementary Methods.

The observation of the emergence of a zonal flow, excited by
the developing turbulent degrees of freedom and the demonstration
of its role in determining the phenomenology of transitional pipe
turbulence has an interesting consequence: the zonal flow can be
assisted by rotating the pipe, and this should catalyse the transition
to turbulence, causing it to occur at lower Re. Indeed experiments
on axially-rotating pipes34 are consistent with this prediction.

Our work underscores not only the potential importance of zonal
flows in other transitional turbulence situations9,10, but also shows
the utility of coarse-grained effective models for non-equilibrium
phase transitions, even to states as perplexing as fluid turbulence.

Received 15 May 2015; accepted 7 October 2015;
published online 16 November 2015

References
1. Reynolds, O. An experimental investigation of the circumstances which

determine whether the motion of water shall be direct or sinuous, and of the
law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. A 174,
935–982 (1883).

2. Lemoult, G., Gumowski, K., Aider, J.-L. & Wesfreid, J. E. Turbulent spots in
channel flow: An experimental study. Eur. Phys. J. E 37, 1–11 (2014).

3. Borrero-Echeverry, D., Schatz, M. F. & Tagg, R. Transient turbulence in
Taylor–Couette flow. Phys. Rev. E 81, 025301 (2010).

4. Hof, B., de Lozar, A., Kuik, D. J. &Westerweel, J. Repeller or attractor? Selecting
the dynamical model for the onset of turbulence in pipe flow. Phys. Rev. Lett.
101, 214501 (2008).

5. Wygnanski, I., Sokolov, M. & Friedman, D. On transition in a pipe. Part 2: The
equilibrium puff. J. Fluid Mech. 59, 283–304 (1975).

6. Moxey, D. & Barkley, D. Distinct large-scale turbulent-laminar states in
transitional pipe flow. Proc. Natl Acad. Sci. USA 107, 8091–8096 (2010).

7. Avila, K. et al. The onset of turbulence in pipe flow. Science 333,
192–196 (2011).

NATURE PHYSICS | VOL 12 | MARCH 2016 | www.nature.com/naturephysics

© 2016 Macmillan Publishers Limited. All rights reserved

247

http://dx.doi.org/10.1038/nphys3548
www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS3548

8. Nishi, M., Bülent, Ü., Durst, F. & Biswas, G. Laminar-to-turbulent transition of
pipe flows through puffs and slugs. J. Fluid Mech. 614, 425–446 (2008).

9. Song, B. & Hof, B. Deterministic and stochastic aspects of the transition to
turbulence. J. Stat. Mech. 2014, P02001 (2014).

10. Manneville, P. On the transition to turbulence of wall-bounded flows in general,
and plane couette flow in particular. Eur. J. Mech.-B 49, 345–362 (2015).

11. Pomeau, Y. Front motion, metastability and subcritical bifurcations in
hydrodynamics. Physica D 23, 3–11 (1986).

12. Sipos, M. & Goldenfeld, N. Directed percolation describes lifetime and growth
of turbulent puffs and slugs. Phys. Rev. E 84, 035304 (2011).

13. Shi, L., Avila, M. & Hof, B. The universality class of the transition to turbulence.
Preprint at http://arXiv.org/abs/1504.03304 (2015).

14. Willis, A. P., Cvitanović, P. & Avila, M. Revealing the state space of turbulent
pipe flow by symmetry reduction. J. Fluid Mech. 721, 514–540 (2013).

15. Cvitanović, P. Recurrent flows: The clockwork behind turbulence. J. Fluid
Mech. 726, 1–4 (2013).

16. Avila, M., Mellibovsky, F., Roland, N. & Hof, B. Streamwise-localized solutions
at the onset of turbulence in pipe flow. Phys. Rev. Lett. 110, 224502 (2013).

17. Kerswell, R. Recent progress in understanding the transition to turbulence in a
pipe. Nonlinearity 18, R17–R44 (2005).

18. Eckhardt, B., Schneider, T. M., Hof, B. &Westerweel, J. Turbulence transition in
pipe flow. Annu. Rev. Fluid Mech. 39, 447–468 (2007).

19. Chantry, M., Willis, A. P. & Kerswell, R. R. Genesis of streamwise-localized
solutions from globally periodic traveling waves in pipe flow. Phys. Rev. Lett.
112, 164501 (2014).

20. Crutchfield, J. P. & Kaneko, K. Are attractors relevant to turbulence? Phys. Rev.
Lett. 60, 2715–2718 (1988).

21. Barkley, D. Simplifying the complexity of pipe flow. Phys. Rev. E 84,
016309 (2011).

22. Mobilia, M., Georgiev, I. T. & Täuber, U. C. Phase transitions and
spatio-temporal fluctuations in stochastic lattice Lotka–Volterra models. J. Stat.
Phys. 128, 447–483 (2007).

23. Willis, A. P. & Kerswell, R. R. Turbulent dynamics of pipe flow captured in a
reduced model: Puff relaminarisation and localised ‘edge’ states. J. Fluid Mech.
619, 213–233 (2009).

24. Prigent, A., Grégoire, G., Chaté, H., Dauchot, O. & van Saarloos, W. Large-scale
finite-wavelength modulation within turbulent shear flows. Phys. Rev. Lett. 89,
014501 (2002).

25. Duguet, Y. & Schlatter, P. Oblique laminar-turbulent interfaces in plane shear
flows. Phys. Rev. Lett. 110, 034502 (2013).

26. Diamond, P. H., Liang, Y.-M., Carreras, B. A. & Terry, P. W. Self–regulating
shear flow turbulence: A paradigm for the L to H transition. Phys. Rev. Lett. 72,
2565–2568 (1994).

27. Sivashinsky, G. & Yakhot, V. Negative viscosity effect in large-scale flows. Phys.
Fluids 28, 1040–1042 (1985).

28. Bardóczi, L., Bencze, A., Berta, M. & Schmitz, L. Experimental confirmation of
self-regulating turbulence paradigm in two-dimensional spectral condensation.
Phys. Rev. E 90, 063103 (2014).

29. Parker, J. B. & Krommes, J. A. Generation of zonal flows through symmetry
breaking of statistical homogeneity. New J. Phys. 16, 035006 (2014).

30. Goldenfeld, N. Lectures On Phase Transitions and the Renormalization Group
(Addison-Wesley, 1992).

31. Goldenfeld, N., Guttenberg, N. & Gioia, G. Extreme fluctuations and the finite
lifetime of the turbulent state. Phys. Rev. E 81, 035304 (2010).

32. Dunbar, S. R. Travelling wave solutions of diffusive Lotka–Volterra equations.
J. Math. Biol. 17, 11–32 (1983).

33. Ódor, G. Universality classes in nonequilibrium lattice systems. Rev. Mod. Phys.
76, 663–724 (2004).

34. Murakami, M. & Kikuyama, K. Turbulent flow in axially rotating pipes. J. Fluids
Eng. 102, 97–103 (1980).

Acknowledgements
We gratefully acknowledge helpful discussions with Y. Duguet and Z. Goldenfeld. We
especially thank A. Willis for permission to use his code ‘Open Pipe Flow’23 . This work
was partially supported by the National Science Foundation through grant
NSF-DMR-1044901.

Author contributions
H.-Y.S. and N.G. designed the project. Computer simulations of pipe turbulence were
performed by T.-L.H. Computer simulations of stochastic predator–prey dynamics were
performed by H.-Y.S. All authors contributed to the interpretation of the data and the
writing of the paper.

Additional information
Supplementary information is available in the online version of the paper. Reprints and
permissions information is available online at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to N.G.

Competing financial interests
The authors declare no competing financial interests.

248

© 2016 Macmillan Publishers Limited. All rights reserved

NATURE PHYSICS | VOL 12 | MARCH 2016 | www.nature.com/naturephysics

http://dx.doi.org/10.1038/nphys3548
http://arXiv.org/abs/1504.03304
http://dx.doi.org/10.1038/nphys3548
http://www.nature.com/reprints
www.nature.com/naturephysics


Supplementary Methods and Supplementary Figures for

Ecological collapse and the emergence of traveling
waves at the onset of shear turbulence

Hong-Yan Shih,1 Tsung-Lin Hsieh,1 Nigel Goldenfeld1∗

1Loomis Laboratory of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St.,

Urbana, IL 61801, USA

Supplementary Methods

Direct numerical simulations of the Navier-Stokes equations.

We performed direct numerical simulations (DNS) of the Navier-Stokes equations in a pipe, using

the open-source code “Open Pipe Flow”1. The equations were solved using a pseudo-spectral

method in cylindrical coordinates1, having 60 grid points in the radial (r) direction, 32 Fourier

modes in the azimuthal (θ) direction and 128 modes in the axial (z) direction. Such a model is of

course a reduced description of reality, but the main features can be well captured, with a slight

renormalization of the Re needed to compare with experiment1. For the accuracy required in our

study, we used 32 modes in the azimuthal direction1. The spatial resolutions were chosen such

that the resolvable power spectra span over six orders of magnitude. The pipe length L is 10 times

its diameter D, with periodic boundary conditions in the z direction1. With this resolution, the

transition to turbulence occurs in a range of Re numbers between 2200 and 3000, and moves to

smaller Re at still higher resolution. To try and relate the nominal Reynolds number in our finite

length pipe simulations to the values reported in experiments or simulations with longer pipes, we

found that we could observe puff decay up to about Renominal ∼ 2400, whereas the experimental

1
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threshold for puff decay is about 2000. Thus, we can estimate that the nominal Reynolds number,

Renominal = Reexperiment + ∆Re, with ∆Re ∼ 400 for L = 10D. We report here measurements at

Re = 2600, slightly above the transition2. The mass flux and Re = 2600 were held constant in

time1. The laminar flow is the Hagen–Poiseuille flow, which was independent of time as the mass

flux was held constant1. Therefore the data we show in Fig. 1 with Re = 2600 for L = 10D are

consistent with the puff-splitting regime in the pipe flow experiments, and well below the regime

where the pipe is completely filled with turbulence.

Stochastic simulations of predator-prey dynamics.

The specific system has three trophic levels: nutrient (E), Prey (B) and Predator (A), which corre-

spond in the fluid system to laminar flow, turbulence and zonal flow respectively. Such a system

can be naively modeled by the Lotka-Volterra ordinary differential equations3–5, which in the case

of ecosystems with finite resources do not permit long-time persistent oscillatory solutions, unless

additional biological details such as functional response are included. In fact, it is necessary to in-

clude the dynamics of individual birth-death events, and when this is done correctly, it is found that

the number fluctuations drive the population oscillations6 through resonant amplification. Thus, we

use a stochastic model at the outset.

The interactions between individual representatives of these levels are given by the following

rate equations

Ai
dA−→ Ei, Bi

dB−→ Ei, Ai + Bj
p−−→

〈ij〉
Ai + Aj, Bi + Ej

b−−→
〈ij〉

Bi + Bj,

Bi
m−→ Ai, Ai + Ej

DA−−→
〈ij〉

Ei + Aj, Bi + Ej
DB−−→
〈ij〉

Ei + Bj. (S1)

where dA and dB are the death rates of A and B, p is the predation rate, b is the prey birth rate

due to consumption of nutrient, 〈ij〉 denotes hopping to nearest neighbor sites, DA and DB are

the nearest-neighbor hopping rate for predator and prey respectively, assumed for simplicity here

2

to be the same value DAB for predator and prey. We found that our results are not sensitive to

this assumption, presumably because the predator number is small in the transitional regime. In

addition to the familiar term that describes how the prey act as a source (activate) for the predators

(AB → AA), we have introduced another low order in population number, symmetry-allowed term

(B → A) with rate m; both of these terms model the induction of the zonal flow from the turbulence

degrees of freedom, but the latter one is conventionally omitted in ecosystem contexts, because

it would represent a phenotypic switch such as the mutation of the prey into predator (in rapid

evolution contexts such terms can be relevant7). We include it here, not only because there is no

special reason to exclude it, but because its presence ensures that the phase diagram of the predator-

prey ecosystem shows a transition from extinction (laminar) to coexistence of predator (zonal flow)

and prey (turbulence). Without this term, the predator-prey equations have an intermediate phase

where the prey survive off the nutrient but the predators are dead. We have not observed such

a phase (puffs of turbulence without zonal flow) in our DNS, and so conclude that the induction

of zonal flow by turbulence does indeed occur through this low order mechanism too. We are

primarily interested in long-wavelength properties of the system, at least in the vicinity of the

turbulence transition, where we expect the transverse correlation length to be larger than the pipe

diameter, implying that the behavior is in fact quasi-one-dimensional. The crossover phenomena

associated with this have been discussed previously8, and thus our two-dimensional strip model

should be appropriate and quantitatively correct near the transition.

We simulated these equations on a 401 × 11 lattice (strip) in two dimensions, intended to

emulate the pipe geometry. Lattice sites were only allowed to be occupied by one of E, A or B.

The predator (A) and prey (B) are additionally allowed to diffuse via random walk on the lattice

with diffusion coefficient DAB = 0.1 in units of the square of the lattice spacing divided by the time

step (set equal to unity). The initial conditions for the simulations were a random population of

prey and predator, occupying with probability 4/5 and 1/5 respectively on the lattice sites between
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to be the same value DAB for predator and prey. We found that our results are not sensitive to

this assumption, presumably because the predator number is small in the transitional regime. In

addition to the familiar term that describes how the prey act as a source (activate) for the predators

(AB → AA), we have introduced another low order in population number, symmetry-allowed term

(B → A) with rate m; both of these terms model the induction of the zonal flow from the turbulence

degrees of freedom, but the latter one is conventionally omitted in ecosystem contexts, because

it would represent a phenotypic switch such as the mutation of the prey into predator (in rapid

evolution contexts such terms can be relevant7). We include it here, not only because there is no

special reason to exclude it, but because its presence ensures that the phase diagram of the predator-

prey ecosystem shows a transition from extinction (laminar) to coexistence of predator (zonal flow)

and prey (turbulence). Without this term, the predator-prey equations have an intermediate phase

where the prey survive off the nutrient but the predators are dead. We have not observed such

a phase (puffs of turbulence without zonal flow) in our DNS, and so conclude that the induction

of zonal flow by turbulence does indeed occur through this low order mechanism too. We are

primarily interested in long-wavelength properties of the system, at least in the vicinity of the

turbulence transition, where we expect the transverse correlation length to be larger than the pipe

diameter, implying that the behavior is in fact quasi-one-dimensional. The crossover phenomena

associated with this have been discussed previously8, and thus our two-dimensional strip model

should be appropriate and quantitatively correct near the transition.

We simulated these equations on a 401 × 11 lattice (strip) in two dimensions, intended to

emulate the pipe geometry. Lattice sites were only allowed to be occupied by one of E, A or B.

The predator (A) and prey (B) are additionally allowed to diffuse via random walk on the lattice

with diffusion coefficient DAB = 0.1 in units of the square of the lattice spacing divided by the time

step (set equal to unity). The initial conditions for the simulations were a random population of
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x ∈ [−15, 15] and y ∈ [−5, 5] where x labels the direction along the axis of the ecosystem (pipe)

and y labels the transverse direction. The predator-prey dynamics in Eq. S1 was implemented by

the following algorithm: at each time step, a site i is randomly chosen, a random number s, is

generated from the uniform distribution between zero and one. The behavior on the site is decided

by the random number: (1) if s < 1/6 and the site i is occupied by any individual, and if a

randomly chosen neighbor site is empty, then that individual diffuses to the random neighboring

site with rate µ = 0.01 (i.e. this reaction happens if another uniformly distributed random number

is less than 1 − expµ); (2) if 1/6 ≤ s < 1/3 and the site i is occupied by a prey individual, and

if a randomly chosen neighbor site, j, is empty, then one prey individual is born on the site j with

rate b; (3) if 1/3 ≤ s < 1/2 and the site i is occupied by a predator individual, and if a randomly

chosen neighbor site, j, is occupied by a prey individual, then the prey individual is replaced by

a new-born predator individual with rate p; (4) if 1/2 ≤ s < 2/3 and the site i is occupied by a

predator individual, that predator individual dies with rate dA; (5) if 2/3 ≤ s < 5/6 and the site i

is occupied by a prey individual, that prey individual dies with rate dB; (6) if 5/6 ≤ s < 1 and the

site i is occupied by a prey individual, then the prey individual is replaced by a predator individual

with rate m. Then within the same time step, the above processes are repeated 401 × 11 times so

that on average one reaction takes place at each lattice site in the system.

Measurement of decay and splitting lifetimes.

We measured both the lifetime of population clusters in the metastable region and their splitting

time using a procedure directly following that of the turbulence experiments and simulations2. To

this end, we monitor the coarse-grained prey population density ñB(i) =
∑j=J

j=−J

∑l=H/2
l=−H/2 nB(i+

j, l)/(H + 1)/(2J + 1) − 0.25, where H is the height of the system (11 lattice units) and J = 3.

The lifetime of prey clusters is defined as the time it takes for the last prey individual to die. The

cluster splitting time is defined as the first time that the distance between the edges of two coarse-

4

grained prey clusters exceed 25 unit sites. We comment that both timescales involve implicitly

measurements of quantities that exceed a given threshold, and thus it is natural that the results are

found to conform to extreme value statistics8, 9.

In Figure S1 we show the phenomenology of the dynamics of initial clusters of prey, cor-

responding to the predator-prey analogue for the experiments in pipe flow which followed the

dynamics of an initial puff of turbulence injected into the flow10. Depending upon the prey birth

rate, the cluster decays either homogeneously or by splitting, precisely mimicking the behavior of

turbulent puffs as a function of Reynolds number. Figure S1 (a) and (b) show that the decay is

exponential in time, indicating that it is a memoryless process with a single time constant. Figure

S1 (c) and (d) show that the survival probability is a sigmoidal curve, whose inverse lifetime as

a function of prey birth rate is plotted in a log-linear scale in Figures S1 (e) and (f). If the life-

time were an exponential function, this curve would be a straight line with negative slope. The

downward curvature is a manifestation of super-exponential behavior. These figures indicate a

remarkable similarity to the corresponding plots obtained for transitional pipe turbulence in both

experiments10 and direct numerical simulations2, and demonstrate conclusively that experimen-

tal observations are well captured by an effective two-fluid model of pipe flow turbulence with

predator-prey interactions between the zonal flow and the small scale turbulence.

Derivation of directed percolation from predator-prey model

In order to determine the universality class of the non-equilibrium phase transition from laminar to

turbulent flow, we use the two-fluid predator-prey mode in Equations (S1). Near the transition to

prey extinction, the prey population is very small and no predator can survive, and thus Equations

(S1) can be simplified to

Bi
dB−→ Ei, Bi + Ej

b−−→
〈ij〉

Bi + Bj, Bi + Ej
DAB−−→
〈ij〉

Ei + Bj. (S2)
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measurements of quantities that exceed a given threshold, and thus it is natural that the results are

found to conform to extreme value statistics8, 9.
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turbulent flow, we use the two-fluid predator-prey mode in Equations (S1). Near the transition to
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These equations are exactly those of the reaction-diffusion model for directed percolation11, 12. A

more detailed and systematic way to reach this conclusion is to represent Equations (S1) exactly

in path integral form using the Doi formalism12–17. The resulting action simplifies near the tran-

sition to that of Reggeon field theory18, 19, which has been shown to be in the universality class

of directed percolation20, 21. Numerical simulations of 3 + 1 dimensional directed percolation in

a pipe geometry have reproduced the statistics and behavior of turbulent puffs and slugs in pipe

flow8, 22, and a detailed comparison between theory and numerical simulation in Couette flow has

been reported23. The super-exponential behavior of DP might seem to contradict the expectation

based upon the known critical behavior24. However, it is important to recognize that the usual

exponents relate to DP starting from a single seed, whereas the experiments and simulations are

conducted with an extended seed that has a finite length or number of seed points. These points

behave as independent identically-distributed random variables as long as the transverse correla-

tion length is much smaller than the seed size, but once the correlation length is of order the seed

size, the seed is effectively a single correlated extended source, and once the correlation length is

much larger than this size, there will be a crossover to the usual DP exponents.

6
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18. Mobilia, M., Georgiev, I. T. & Täuber, U. C. Phase transitions and spatio-temporal fluctua-

tions in stochastic lattice Lotka-Volterra models. Journal of Statistical Physics 128, 447–483

(2007).
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Figure S1: Stochastic predator-prey model reproduces the phenomenology of transitional pipe
turbulence. Lifetime and splitting time of clusters of prey are memoryless processes and obey
super-exponential statistics as a function of prey birth rate. To compare with the experiments10,
predator-prey dynamics are performed in two-dimensional pipe geometry as described in the text.
The dimensionless parameters in the simulation are DAB = 0.01, p = 0.1, dA = 0.015, dB = 0.025
and m = 0.001. (a) Log survival probability of prey cluster vs. time during homogeneous decay
to extinction. Here the characteristic time scale that is estimated by τ0 ∼ 200. (b) Log survival
probability of prey cluster vs. time during decay to splitting. (c) Survival probability of prey
cluster as a function of prey birth rate during homogeneous decay to extinction. (d) Survival
probability of prey cluster as a function of prey birth rate during decay to splitting. (e) Log inverse
lifetime of prey cluster, as a function of prey birth rate during homogeneous decay to extinction
(left curve, τ d) and during decay to splitting (right curve, τ s). The dashed curve is given by τ0/τ

d =
1/ exp(exp(46.539b − 0.731)), and the solid curve is given by τ0/τ

s = 1/ exp(exp(−31.148b −
3.141)).
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