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The theoretical description of the forces that shape ecological
communities focuses around two classes of models. In niche theory,
deterministic interactions between species, individuals, and the
environment are considered the dominant factor, whereas in neutral
theory, stochastic forces, such as demographic noise, speciation, and
immigration, are dominant. Species abundance distributions pre-
dicted by the two classes of theory are difficult to distinguish
empirically, making it problematic to deduce ecological dynamics
from typical measures of diversity and community structure. Here,
we show that the fusion of species abundance data with genome-
derived measures of evolutionary distance can provide a clear
indication of ecological dynamics, capable of quantifying the relative
roles played by niche and neutral forces. We apply this technique to
six gastrointestinal microbiomes drawn from three different domes-
ticated vertebrates, using high-resolution surveys of microbial
species abundance obtained from carefully curated deep 16S rRNA
hypervariable tag sequencing data. Although the species abundance
patterns are seemingly well fit by the neutral theory of metacom-
munity assembly, we show that this theory cannot account for the
evolutionary patterns in the genomic data; moreover, our analyses
strongly suggest that these microbiomes have, in fact, been assem-
bled through processes that involve a significant nonneutral (niche)
contribution. Our results demonstrate that high-resolution genomics
can remove the ambiguities of process inference inherent in classic
ecological measures and permits quantification of the forces shaping
complex microbial communities.

metagenomics | microbial ecology

Ecological species distributions are determined by the interplay
between environmental factors and evolutionary processes. In

classic ecological theory, niches characterized by nutrients and
other environmental factors, for example, determine species
abundance distributions and populations primarily through de-
terministic partitioning of resources among species (1). Species
populations are limited by niche-carrying capacity rather than by
interspecies competition, thus tending to promote coexistence (2).
In niche theory, diversity is determined primarily by the number of
available niches, raising the issue of how to account quantitatively
for the apparent observed diversity (3–6) from well-documented
instances of niche differences (7).
An alternative perspective is the class of neutral theories in which

species are functionally equivalent and stochastic factors, such as
immigration, birth/death processes, and speciation, are the primary
drivers of ecological diversity and community structure (8–13). This
class of models has been reported to be capable of accurate pre-
dictions for the species abundance distributions in riverine fish
populations (14) or microbial populations (15), for example, in ad-
dition to the early successes in forest ecosystems, a planktonic co-
pepod community, and a bat community on Barro Colorado Island
(BCI) (10). However, the methodology used in such comparisons is

contentious when examined carefully (16, 17), with sampling issues,
parameter estimation, and model definition being some of the key
factors that require careful attention. The assumptions of neutral
theory, particularly functional equivalence, are not transparently
biological (18); in addition, they have been criticized on a variety of
empirical grounds (19, 20), including predictions for species life-
times, speciation rates, and incidence of rare species (21). Other
technical assumptions, for example, that the number of individuals
competing for a resource is a constant (the “zero-sum” assumption),
may be unrealistic but can be extended or relaxed (13, 22, 23).
Perhaps a more useful insight into the applicability of neutral theory
comes from considering the interplay between niche stabilization
mechanisms and fitness (24). A recent study of a sagebrush steppe
community, where strong niche stabilization mechanisms were
identified even in the presence of apparently small fitness differ-
ences (25), underscores the fact that weak functional inequivalence
need not necessarily mean that niche dynamics are negligible. On
the other hand, a study that attempted to infer pairwise interaction
strengths among the most abundant species at the BCI site found
that interspecies interactions were much weaker than intraspecies
ones, in apparent agreement with neutral assumptions (26).
Despite their fundamental differences, and the plethora of

studies nominally supporting each side of the niche-neutral di-
chotomy, these theories predict species abundance distributions
that are difficult to distinguish empirically (5, 27), with similar
mathematical properties for asymptotically large diversity (28).
The inverse problem of inferring ecological dynamics from meas-
ures of diversity does not appear to have a unique solution, either
theoretically or empirically. Accordingly, a more nuanced per-
spective has arisen (2, 19, 29) in which elements of both types of
theory may contribute to a proper description of the ecological
dynamics, and a variety of mathematical frameworks for accom-
plishing this type of synthesis have recently appeared (26, 30–35).
Nevertheless, it remains an open question as to how to characterize
community dynamics properly and how to quantify the relative
roles of niche and neutral processes usefully in the evolutionary
dynamics of ecosystems.
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These questions are of particular relevance to microbial com-
munities, which play functionally important roles in ecosystems
but are typically rich in diversity, suggesting the presence of sub-
populations shaped primarily by stochastic forces. Such commu-
nities would not be expected to represent end members of the
niche-neutral continuum, and quantification of their structuring
process represents a complex problem that has recently attracted
attention. Most studies find evidence for a mixture of neutral and
niche processes in microbial community assembly (36–40). These
seem to arise for different physical reasons. One indication is that
the neutrally assembling taxa are generalist microbes that can exist
in a wide variety of environments (38), whereas the niche portion
of the microbiota is adapted to the media conditions (41). There
are also indications that that microorganismal cooccurrence pat-
terns are shaped by the same processes and interactions that shape
macroorganismal cooccurrence patterns (42).
In this paper, we propose a methodology for addressing the

problem of quantifying the relative role of niche and neutral
processes in structuringmicrobial communities by fusingmeasures
of abundance with phylogenetic information. The merging of
classic ecological measures with phylogenetic analysis is growing in
importance but is still in its infancy (43–47). Themethod presented
here is particularly applicable to uncultured microbial communi-
ties that are characterized by a high level of diversity and are
amenable to modern metagenomic tools, such as pyrosequencing.
To explain the basic idea of how we quantify an ecosystem on

the niche-neutral continuum, it is necessary to recall how micro-
biomes can be probed by genomic methods. The first step in an
ecological study of a microbiome, following sequencing, cleanup,
and alignment, is the assignment of sampled sequences into op-
erational taxonomic units (OTUs) through a clustering process
(48). The OTUs are then used as a proxy for estimating microbial
species abundance (49). The OTU data are twofold. On the one
hand, the OTUs have relative abundances that are estimations of
the species’ abundances in the environment. On the other hand,
the OTUs also have representative sequences associated with
them. Typically, a representative sequence of an OTU is the most
abundant of the identical clones within the OTU, and it is also
more than 97% similar to every other sequence within that OTU.
These genomic data associated with the representative sequence
allow us to think of OTUs as points in a sequence space as illus-
trated in Fig. 1. We can think of distances between points in this
space as corresponding to the phylogenetic or sequence distances
between the sequences in these OTUs.
This cloud of points in high-dimensional sequence space can

also be labeled byOTUabundance. In our work, this is determined
by sequence abundance (after every effort has been made to ac-
count for artifacts); however, in principle, OTU abundance labels

could be obtained from any other source, such as quantitative
PCR. In this space, we can categorize the OTUs into two sorts: the
most abundant OTUs (which we term modal OTUs and define
precisely below) and the other, less abundant, OTUs (which we
term rare OTUs and define precisely below). The correlations
between themodal and rareOTUswill depend on the evolutionary
dynamics and, in fact, exhibit sharp mathematical differences that
can be used to discriminate different putative dynamics. To see the
essential idea, we will now explain how this would work in two
caricatures of ecosystem dynamics: a simplified neutral model and
a simplified niche model. A significantly more elaborate analysis is
carried out below, in the main body of this paper, but the key
concepts are captured by these simplified models.
First, suppose that the evolutionary dynamics are themselves

neutral, such that the rare and modal OTUs are distributed at
random in the high-dimensional sequence space. We are going to
be interested in measuring the distances between sequences
corresponding to different OTUs and comparing their similarity.
Let us assume that the sequences being analyzed are all of the
same length, containing L nucleotide bases from the usual four-
letter alphabet (ACGT); here, we are ignoring real-life compli-
cations, such as insertions, deletions, and gaps. We label the
sequences by Siα, where α ¼ 1 . . .L labels the position along the
sequence and i labels the OTU; Siα can take the values 1, 2, 3, 4
corresponding to the alphabet of bases ACGT. We define the
normalized Hamming distance, Hij, between two sequences i and
j as the fraction of bases in i that is different from the base in the
corresponding position in j:

Hij ≡
1
L

XL

α¼1

�
1− δ

�
Siα − Sjα

��
[1]

where δ denotes the Kronecker delta. The mean hHi of Hij av-
eraged over a large sample of random sequences would be 3=4,
because there is a 1=4 chance that two bases at the same position
are identical. Thus, the probability distribution of H would be
expected to be a roughly bell-shaped curve, peaked around
H ¼ 3=4, with a width dependent on the number of sequences.
In practice, there are complications attributable to insertions,
deletions, and gaps as well as to, most importantly, conserved
positions. Bases that are highly conserved cannot be appropri-
ately modeled as being chosen randomly from the alphabet. This
can be taken into account by simply restricting the above analysis
to bases that are strongly nonconserved: Let us call the number
of highly conserved bases M <  L, such that the expected value of
H will now be reduced by the fraction of conserved bases:
hHi ¼ 3ðL−MÞ=4L. Thus, taking into account conservation, the
bell-shaped curve will shift its peak to a smaller value of H. In
the data presented below, we found that L ∼ 200 and M ∼ 160,
such that the distribution of H should be peaked at about 0.15 in
the case of a neutral system. Now consider a subset fEkg of
distances fHijg. For each rare OTU k, we rank all the distances
between OTU k and each modal OTU l. Then, we select the
shortest such distance and label it Ek. In this way, the set fEkg is
the set of distances of rare OTUs to their nearest niche neighbor.
For the above case, where the evolutionary dynamics are neutral-
like, the distribution of E is also a bell-shaped curve like the
distribution of H. However, its mean is slightly shifted to the
smaller values and its SD is smaller (because fEg is the subset
of shortest distances from the set of fHg). In other words,
hEi< hHi.
Second, let us consider a caricature of a system that is domi-

nated by niche dynamics. In the extreme (and unrealistic) case in
which there is only one niche, occupied by one particular modal
OTU, the probability distribution of E will be a delta distribution
peaked at E ¼ 0. In a more realistic model, where there is
a cloud of rare OTUs surrounding the modal OTU, having

Fig. 1. Sketch of the starting point for a metagenomic analysis of an en-
vironment. Circles indicate OTUs, and abundance (number of sequences
within the OTU) is labeled by the size of the circle. A representative se-
quence is associated with each OTU. The OTUs are embedded in a sequence
space, such that the distance between the circles in the sequence space
corresponds to, for example, sequence or phylogenetic distance between
the representatives.
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evolved from it by a few point mutations, one would expect the
probability distribution of E to be peaked at E ¼ 0 and then to
decrease monotonically for E >  0. In the case of a system with
several niches, the probability distribution for E will be some-
what more complicated, because one needs to calculate the
normalized Hij from each rare OTU to the nearest modal OTU,
and this requires making a Voronoi polyhedron construction in
sequence space. Nevertheless, for small values of E, the proba-
bility distribution will be dominated by the single niche argument
given above and the functional form will be unchanged: peaked
at the origin and monotonically decreasing for E > 0. These two
caricatures for simplified models of ecosystem structure are
sketched in Fig. 2 and show that there are clear and distinct
signatures arising from the nature of the processes that have
structured the community.
In the remainder of this paper, we numerically evaluate the

metric for model systems to confirm quantitatively and concretely
the above heuristic description. We then describe how we have
implemented these ideas in a proof-of-principle study of verte-
brate gastrointestinal (GI) microbiomes. These experimental sys-
tems were chosen not only because of the growing recognition of
the importance of microbiomes as a determinant of host health
(50) but because these are systems that have high diversity and
are likely to be shaped by both stochastic and niche processes.
Indeed, as we will see, they can be well described naively by
neutral theory, although, in fact, niche processes play a funda-
mental role in structuring these communities.

Model Calculations
In this section, we evaluate our metric on model systems pa-
rametrized by a single parameter, α, the proportion of the system
undergoing a niche dynamic. We perform 5,000 Monte Carlo
simulations of the following process. We simulate N OTUs
(here, N ¼ 1; 000), each with representative sequences of length
L ¼ 200. A subset αN ð0≤ α≤1Þ of the OTUs undergoes a niche
dynamic in the following way. A single random OTU is chosen to
be the center of the niche. The remaining αN − 1 OTUs (niche
OTUs) are generated by performing random mutations of the
genome of the OTU representing the niche center. The place-
ment and number of the mutations were chosen randomly in the
following way. Placements of mutations were sampled uniformly
(without replacement) across the entire genome. The number of
mutations for each of the niche OTUs was sampled from an
exponential distribution, thereby modeling the evolution of
OTUs under multiplicative fitness pressure (a larger number of
mutations corresponds to smaller fitness, and hence to a smaller
abundance of OTU). The remaining ð1− αÞN OTUs (neutral
OTUs) are randomly distributed throughout the sequence space,
and they represent the sequences undergoing dynamics under no
evolutionary pressure (neutral dynamics).
Each OTU in the model system is associated with an abun-

dance. The abundances of neutral OTUs are randomly sampled
from an exponential distribution. (In the Hubbell Neutral
Model, the OTU rank abundances are exponentially distrib-
uted.) On the other hand, the abundance of niche OTUs expo-
nentially scales with their closeness to the niche:

Ni ¼ A expð− diÞ [2]

where Ni is the abundance of OTU i and di is the distance from
the OTU to the center of the niche (in sequence space). The
results of our metric, the distributions of fEkg, are shown in Fig.
3 for three model systems characterized by values of α = 0, 0.5,
and 1. We see that the heuristic arguments we described in the
previous section and sketched out in Fig. 1C are consistent with
these model numerical calculations.
It is instructive to demonstrate the effects of two factors on

our metric so as to highlight some of the mathematical con-
siderations that went into the design of the metric, particularly
our use of an extremal measure (the shortest distance aspect
of our metric) and the influence of sampled abundance dis-
tributions. First, we demonstrate the role of extremality in-
troduced by choosing the subset fEg. Instead, if we choose to
plot the distribution of fHg, we obtain qualitatively the same
results for neutral-like models (compare models 1 and 2 in

A

B

C

Fig. 2. (A) Classification of the OTUs into two groups based on the rank
abundance. The top k% of OTUs are labeled modal, whereas the remaining
OTUs are labeled rare. (B) Sketch of the neutral and niche evolution pro-
cesses in sequence space. Light blue OTUs are rare, whereas red OTUs are
modal. For the neutral process, the average distance of a rare OTU to its
closest modal OTU is large (indicated by the arrow). For the niche process,
this distance is much smaller because rare OTUs cluster about the modal
OTUs that define the niches. (C) Sketch of the expected distributions of
distance to the closest modal OTU. For the neutral process, this distribution is
peaked around some nonzero distance, which is close to the average dis-
tance between the OTUs in the dataset. In the niche process, the distribution
monotonically decays with distance because the rare OTUs are attracted to
the niches.

Fig. 3. Results of our metric, the distributions of E shown for a fully niche-
like model dataset ðα  ¼ 1Þ, a fully neutral-like model dataset ðα ¼ 0Þ, and an
intermediate dataset ðα ¼ 0:5Þ. The results shown are the average of 5,000
Monte Carlo simulations for each dataset.
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Fig. S1). However, for niche-like models, the peak at zero
moves to a nonzero peak that corresponds to the average size
of the niche (compare models 5 and 6 in Fig. S1). Thus, the
choice of an extremal measure is important in making sure that
the end-member distributions (pure niche and pure neutral) are
clearly distinct.
Second, we demonstrate what might appear at first to be

a rather counterintuitive fact: The distribution of distances is only
weakly dependent on the abundance distribution of the OTUs. If
the abundance of an OTU k is Nk, we could then imagine modi-
fying our procedure by weighting the contribution of Ek in the
distribution fEg by a factor of Nk. Such a weighting introduces no
change whatsoever in the neutral dataset (comparemodels 2 and 4
in Fig. S1) and no qualitative change in the niche dataset (models 6
and 8 in Fig. S1). Finally, we can also weigh the distribution of fHg
in such a way that each distance Hij between OTUs i and j gets
weighted by a factor of NiNj. The results are exactly the same as
with no weighing for the neutral dataset (compare models 1 and 3
in Fig. S1) and are qualitatively the same for the niche dataset
(compare models 5 and 7 in Fig. S1).

Results
We performed a pyrosequencing study of the GI microbiomes of
three pairs of domesticated vertebrates: two swine, two cattle,
and two chickens. These pairs of organisms were chosen as pilots
for probing specific microbiome issues of relevance to animal
science. In particular, we attempted a comparative study looking
at the effects of diet on identically cloned swine and the effects of
a microbial challenge on two identically raised chickens. For the
purposes of this paper, these comparisons and the outcomes of
the experiments are not of interest: Full details of the compar-
isons and other studies will be published elsewhere. In this study,
two genetically identical cloned swine were fed different diets
and their fecal samples were then collected for sequencing.
Cattle rumen 1 and cattle rumen 2 were rumen fistulae sampled
at 0 and 8 h after feeding, respectively (51). Chicken cecum 94
was inoculated with Campylobacter jejuni 1 wk before cecal
sampling. Chicken cecum 1 was kept under the same conditions

but without oral gavage of C. jejuni (52). Details regarding the
laboratory protocols are provided in Materials and Methods. The
GI samples were subjected to deep hypervariable 16S rRNA tag
sequencing using a 454 Life Sciences Genome Sequencer GS
FLX (49). Table S1 shows the average read length and number
of reads obtained for each sample.
Following their acquisition, we aligned the pyrosequenced reads

using NAST (53) to the SILVA (54) database.We also aligned the
reads using the front end of the Ribosomal Database Project
(RDP) (55) to the Infernal (56) structural aligner. For each
dataset, the NAST + SILVA and RDP + Infernal multiple
alignments were merged and hand-curated using the methodology
and tools described by Sipos et al. (48). Short reads and sequences
with unknown nucleotides were removed. Spurious “tails” in the
multiple alignment, sequences that extend beyond the region of
16S common to all the sequences in the dataset, were also re-
moved. Distance matrices were generated from the multiple
alignments and were then fed to a complete linkage clustering
algorithm to generate the OTUs. The careful multiple alignment
procedure led to a vast reduction in the number of resulting OTUs
in the datasets, as previously reported by Sipos et al. (48).Multiple
alignment, species diversity, and richness metrics for each of the
six GI microbiome samples are provided in Table S1. Rarefaction
curves show how the number of sampled OTUs varies as a func-
tion of the number of organisms sampled. Our rarefaction curves
are shown in Fig. S2 for each of the six datasets.
We plotted the abundances of the OTUs for each of the six

datasets in our study, and we find very good agreement with the
neutral model. These are displayed in rank-abundance form in
Fig. 4 and in alternative forms in Figs. S3 and S4. The early ranks
(high-abundance OTUs) show some systematic deviation from
the abundances expected from neutral theory; however, at face
value, these results are consistent with the majority portion
(thousands) of the OTUs evolving in the absence of any apparent
selection acting on the individual OTUs. Given all the factors
that influence the GI microbiome (57–62) and the reproducible,
and thereby seemingly host-selected, microbial abundances (63),
it seems counterintuitive that there should be no apparent

Fig. 4. Comparison of rank-abundance curves and neutral model fits for the six animal GI microbiomes. Lines indicate fits to Hubbell’s neutral meta-
community model. Parameter θ of the model is fit to correspond to the exponential tail in rank abundance. Offset represents the number of high-abundance
OTUs that do not fit the neutral model.
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selection for the vast majority of OTUs in the exponential tail of
the rank abundance. However, if we compare taxonomic assign-
ments of microbes across each pair of animals in our study (Fig.
S5), we find that there is a correlation between the relative
abundances of taxa in members of each animal pair. Specifically,
we observe that the most abundant taxonomic orders are the
same for each animal pair (Clostridiales for swine and chickens
and Pseudomonadales for cattle). This correlation also extends
to other taxonomic orders. Hence, our dataset indicates that
certain taxa are favored more than others within the GI tract of
these six vertebrates.
We now attempt to resolve this apparent contradiction, namely,

that the neutral theory fits the rank-abundance patterns well, with
only two fitting parameters, even though the taxonomic data
suggest niche selection. To do this, we must turn our attention to
other information contained within the pyrosequenced reads. As
shown in Fig. 1, the OTUs with their characteristic sequences and
associated abundances form patterns within a high-dimensional
space. Each read constitutes a point in this space, defined by its
nucleotide sequence. One way in which we can attempt to com-
prehend the structure of this space is through dimensional re-
duction. We use principal component analysis (PCA) to place the
OTUs into a 2D space spanned by the two principal components.
We perform a weighted version of PCA (64), where we assign
a weight to the OTUs proportional to their abundance. The
resulting patterns in the space of two principal components are
shown in Fig. S6. Each circle in the figure is an out, and the circles’
size and color indicate the logarithm of the OTU abundance.
As a control, we generate datasets of artificially generated

sequences (hereafter referred to as neutral datasets).We generate
a neutral dataset for each of the six experimental datasets to fa-
cilitate a one-to-one comparison. Each neutral dataset is con-
structed in such a way that it has the same number of OTUs and
the same OTU abundance distribution as the associated experi-
mental dataset. However, the representative sequence for each
OTU is artificially generated and has a randomized sequence, with
the constraint that it has the same sequence statistics as the orig-
inal dataset (probability of observing a nucleotide at a position in
the multiple alignment) and column conservation. This ensures

that the sequences are randomly distributed along a realistic
submanifold of sequence space (the subset of 16S sequences that
are allowed by secondary structure). We then run the PCA on the
neutral datasets (Fig. S7). Comparing Figs. S6 and S7, we notice
the following pattern in the experimental GI data: the low-abun-
dance OTUs cluster around the high-abundance OTUs in the
dimensionally reduced space. In the neutral datasets, this is not
observed; instead, the PCA distributes the OTUs approximately
uniformly in the dimensionally reduced space.
We now formulate a heuristic to discriminate clearly between

the randomly assembled model sequences and those assembled
from a niche-driven process. On a rank-abundance curve, we label
the k%of the most abundant OTUs as modal OTUs.We label the
remaining OTUs as rare OTUs (Fig. 2A). Instead of using the
whole-dataset rank-abundance curve, one can use per-order rank-
abundance curves if additional resolution is necessary. Once
modal and rare OTUs have been assigned, for each rare out, we
compute the distance to the modal OTU that is closest to it. The
motivation behind this heuristic is the following. The spread pat-
tern of sequence abundances gives us an indication of whether
organisms are evolving neutrally or toward defined niches. In long-
time behavior, neutral evolution leads to the expectation that
organisms have an equal chance of being anywhere in this space.
Niche selection, however, suggests a very biased distribution of
organisms. In particular, organisms would be densely clustered
about the local optimum for each niche (Fig. 2B). These two
scenarios lead to very different distributions of distance to nearest
niche. If the OTUs are undergoing a niche-driven dynamic, the
rare OTUs will tend to drop off exponentially in abundance
around the modal OTUs. If, on the other hand, the OTUs have
been sampled from a community shaped by neutral evolutionary
dynamics, the rare OTUs’ distance to closest modal OTU will be
peaked around some nonzero distance that is the average distance
between any two OTUs in the dataset (Fig. 2C).
We apply the above analysis to the case of GI microbiome

datasets of the six vertebrates. The results are summarized in Fig.
5. In this figure, the blue bars indicate the results of our metric
applied to experimental data. The dashed red lines indicate the
results of the metric applied to a dataset of sequences that were

Fig. 5. Histogram of distances of rare OTUs to the nearest modal OTU for each of the six GI microbiomes with the cutoff k ¼ 5% (blue bars indicate ex-
perimental data). Red lines indicate the results of the metric applied to sequences that were randomized while preserving rank abundance and sequence
statistics (main text). Cattle and swine datasets share the same y axis.
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randomized in the way described above. The results indicate that
theGI tracts of the six vertebrates largely undergo niche dynamics,
with the possible exception of a subpopulation of the chicken GI
tracts. The chicken datasets have a small nonzero peak corre-
sponding to the average distance between sequences chosen at
random. Our study indicates that the sequences within this peak
may be undergoing neutral dynamics. The results that we obtain
are robust in that they do not qualitatively depend on the choice of
the cutoff k. In Fig. S8, we show the metric for k ¼ 3% and
k ¼ 7%. Similarly, the results of the metric on model systems are
virtually unchanged when k is changed between 2% and 10% (Fig.
S9), indicating robustness. Although our metric is robust in this
way, the reader is reminded that phylogenetic resolution is nev-
ertheless important: Some niches may appear as single OTUs at
97% sequence identity.

Discussion
In this work, we set out to construct genomic-based measures
of ecosystem diversity and abundance that can provide evidence
for process. We focused on understanding the processes that
structure microbial communities because these play functionally
important roles in many ecosystems yet are rich in diversity.
Thus, such systems would, a priori, be expected to contain at
least subpopulations shaped primarily by stochastic forces. The
dual features of high diversity and foundational role in their
host ecosystem suggest that microbial communities would not
be simple to characterize as either niche or neutral. At the same
time, theoretical arguments suggest that such high-diversity
communities might appear, for fundamental statistical reasons,
as neutral.
We succeeded in creating a quantitative metric that fuses

abundance and genomic data to determine whether an ecological
system is dominated by neutral evolution or by niche selection.
The key concept was to explore the correlations and associated
probability distributions between the most abundant members of
the community and the long, low-abundance tail members. We
showed that the signature of the probability distribution de-
scribing the distance in genomic sequence space from each rare
OTU to the nearest modal OTU provided a signature of the
strength of niche dynamics. We tested this construct on large
datasets from six animal GI tract microbiomes, finding that the
results are inconsistent with neutral assembly in all cases. We
conclude that niche selection largely dominates within the GI
microbiome, despite the fact that the rank-abundance patterns
are apparently well-modeled by neutral theory.
Our results provide firm evidence from an empirical dataset

that apparently neutral patterns of diversity and abundance can
arise from niche-dominated dynamics, in agreement with earlier
theoretical expectations (2, 5, 19, 27–29). Our results establish
definitively that simple ecological measures need to be, and can
be, augmented by genomic data to provide insight into the pro-
cesses that structure communities.

Materials and Methods
Sample Preparation. All procedures involving animals were approved by the
Institutional Animal Care and Use Committee of the University of Illinois. For
each animal, we used two different samples for our test that vary in some
aspect, such as diet or sampling times. The Duroc sow (University of Illinois
at Urbana–Champaign 2-14; T. J. Tabasco) was used as the genomic template
for producing cloned animals using somatic cell nuclear transfer. T. J. Tabasco
was used to produce the CHORI 242 BAC library, which was used to generate
the full pig genome sequence (65). The clones were born by vaginal delivery
and allowed to suckle. They were weaned at 4 wk of age and continuously
housed together. They were not vaccinated or ever in contact with other pigs
after weaning. Pigs were fed once daily in the morning and had free access to
water. Fecal samples were collected on day 14 (the last day of that feed

rotation) of each diet for a total of four samples for each animal. Samples
were collected from the rectum into a sterile tube and frozen at −80 °C until
time of analysis. Bovine rumen samples were collected as previously reported
(51). Chicken caeca were collected as previously reported (52).

Sequencing. Swine and cattle samples were sequenced using PCR product
from PCR-specific primers flanking the V1–V3 region of bacterial 16S rDNA
(66). The forward fusion primers for pyrosequencing included 454 Life Sci-
ence’s A adapter and barcode A fused to the 5′ end of the V1 primer 27F.
The V3 primer 341F was used in chickens. In all samples, the reverse fusion
primer included 454 Life Science’s B adapter (lowercase) fused to 5′ end of
V3 primer 534R. The fragments in the amplicon libraries were subjected to
a single pyrosequence run from the V3 primer end using a 454 Life Science
Genome Sequencer GS FLX (Roy J. Carver Biotechnology Center, University
of Illinois). The sequence reads for chicken 1, cattle 1 and 2, and swine 1 and
2 have been deposited in the National Center for Biotechnology Information
Sequence Reads Archive (accession no. SRA052136.3). Chicken 94 reads have
been previously deposited as reported (48).

Rank Abundance, Species Abundance, Preston Plots, and Taxa Distributions.
The reads from cattle and swine microbiomes were cleaned up using the
method recommended by Kunin et al. (67). For the chicken cecum micro-
biome, we removed all sequences shorter than 100 bp. The ends of all reads
were trimmed so that the sequences start and end in the same place in the
16S rRNA consensus structure. All remaining sequences were then aligned
using the method described by Sipos et al. (48). The OTUs were clustered
using the complete linkage method of Schloss et al. (68) with a cutoff of
3% sequence identity with the denominator 4 from the method of May (69)
(counting indels as differences). The OTU abundance data for rank abun-
dance were then binned into a histogram using the method described by
Adami and Chu (70). Species-abundance and Preston plots were generated
according to the method of Gray et al. (71). Neutral model curves were
generated using the algorithm for the sampling organisms from a neutral
metacommunity (10). Hubbell’s θ parameter was fixed to match the expo-
nentially decaying tail of the rank abundance. Offset was chosen by a least-
squares method. Taxonomy assignments and comparison of libraries were
made with the Library Compare tool (72) at the RDP (55).

PCA Ordination. In Fig. S6, we show the results of PCA on our OTU data. In
performing this calculation, each OTU was associated with a vector of real
numbers of dimension 4L, where L is the length of the multiple alignment.
The elements of the vectors were calculated in the following way. Each
nucleotide within the multiple alignment is represented by a subvector of
four numbers: A is ð1; 0;0; 0Þ, C is ð0; 1; 0;0Þ, G is ð0; 0; 1; 0Þ, and T is ð0; 0; 0; 1Þ,
whereas the gap is represented as ð0;0; 0; 0Þ. The vector associated with the
OTU is then the arithmetic average of the vectors associated with each se-
quence within the OTU. We then perform the weighted PCA procedure (64),
where we weigh each OTU by its abundance.

Closest-Distance Metric.We used the percent sequence distance metric in Fig.
5. The randomized dataset (red line) was generated in the following way.
Each OTU (with its associated abundance) was replaced by a representative
randomized sequence. This sequence was generated by selecting each nu-
cleotide from a distribution of probabilities generated from the sequence
reads. In this way, the base pair distribution for each position in the multiple
alignment of the model dataset is the same as that of the experimental
dataset. Furthermore, because the abundances of OTUs are kept, the rank
abundance of the model dataset is exactly the same as that of the
experimental dataset.
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