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Intermediate Asymptotics and
Renormalization Group Theory'
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The principles of the renormalization group {RG) arc presented pedagogically
from the point of view of intermediate asymptotics (IA), which is familiar to
hydrodynamicists and applied mathematicians. To demonstrate the equivaience
of RG and [A approaches, a typical statistical mechanical problem, conven-
tionally studied by the renormalized perturbation approach, is reconsidered
from the IA point of view, and renormalized perturbation theory is applied to
a partial differential equation conventionally studied by IA. This example is
important because it is an explicit demonstration that the RG can be applied to
partial differential equations without adding a noise source. We suggest that the
ideas explained in this article may be applicable to the Navier-Stokes equation.

KEY WORDS: Renormalization group: intermediate asymptotics;, nonlinear
parabolic equations.

1. INTRODUCTION

Attempts to apply perturbative renormalization group (RG) approaches to
the problem of turbulence have apparently met with quantitative success
(Yakhot and Orszag, 1986; Forster ¢t al., 1977; De Dominicis and Martin,
1979). For example, Yakhot and Orszag have successfully calculated the
Kolmogorov constant for the inertial range spectrum, the turbulent
Prandtl number for high-Reynolds-number heat transfer, etc. It is still fair
to say that the reason for this success has not been well understood, espe-
cially since the unperturbed state for the adopted perturbation scheme and
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the state in which we are interested have a qualitatively different character.
The successful applications of the renormalization group in other areas of
physics have always started from states qualitatively similar to the actual
physical states of interest.

Our purpose in writing this article is threefold: Firstly, we wish to
explain the general approach of renormalization group methods (Wilson,
1971; Brezin efal, 1976) to extract macroscopic phenomenology from
microscopic models. Secondly, we point out the equivalence of RG theory
and the theory of intermediate asymptotics (IA) (Barenblatt, 1979) familiar
to hydrodynamicists and applied mathematicians; in so doing we present a
new point of view of RG theory which we hope will be useful in the
application of RG to nonlinear problems such as turbulence. We will find,
inter alia, that the so-called anomalous dimensions in RG theory are the
nontrivial exponents appearing in IA. To make our point of view as
perspicacious as possible we have chosen to discuss two problems: a
statistical mechanical problem, conventionally treated by RG, is solved
from the IA point of view, and a problem in TA, discussed by Barenblatt
{1979), is solved with the aid of RG. Thus, our work extends the range of
problems that may be solved using RG. Thirdly, in the only existing RG
approach to turbulence (Yakhot and Orszag, 1986; Forster eral., 1977,
De Dominicis and Martin, 1979), the starting point is to supplement the
Navier-Stokes equation with a judiciously chosen noise source. We show,
by explicit example, that even perturbative RG methods can be directly
applied to partial differential equations without requiring the additional
stochastic element.

This is partly a pedagogical article, but the relation between RG
and 1A is pointed out for the first time in the work reported here. The
explicit calculations that we report are presented in more detail elsewhere
{Goldenfeld et al., 1989).

In Section 2, we summarize the theory of intermediate asymptotics. In
Section 3, the fundamental idea of renormalization group theory as a
method to extract macroscopic phenomenology from microscopic models is
explained. In Section 4, a single-chain polymer, which is conventionally
successfully studied by a renormalized perturbation theory, is studied from
the A point of view. In Section 5, a typical IA problem, Barenblatt’s
problem, is solved by a renormalized perturbation method. Section 6 is a
discussion and summary.

2. A SUMMARY OF INTERMEDIATE ASYMPTOTICS

Buckingham’s 7I-theorem (Buckingham, 1914) states that any con-
sistent physical relation can be written in terms of dimensionless
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quantities. Consider a situation in which a dimensionless quantity /7 is
given as a function of a finite set of dimensionless variables (parameters)
th,, I,,.., I,}:

H:.f(n()71717'“3 Hrz) (21)

The dimensionless variables f1, are functions of dimensional quantities
which are the physical variables of the problem. Suppose we are interested
in the intermediate asymptotic limit of /7,-»0. which is assumed to be
realized by changing an appropriate physical variable in the problem. A
system is said to be in an intermediate asymptotic state when its behavior
is independent of the details of the initial and/or boundary conditions, yet
has not attained its final state. In the language of statistical physics, such
a regime is known as a scaling regime.
Barenblatt (1979) classifies the situation into three categories:

(i) The theory is well defined in this limit. That is, f is nonsingular
at IT,=0, and £(0, I,,..., I1,) is well defined. This case is referred as self-
similarity of the first kind.

(ii) f(0, M,,.., I1,) is not well defined, but there exists a set of real
numbers {a, %, %,..., %, } such that the following limit is well defined:

im [7/M%= lim f(ITy. I,/I,..., T,/ 1T (2.2)

IIy— 0 Iy — 0

If / obeys a partial differential equation (PDE), then the parameters
%, %,,.., %, can in principle be determined from the PDE. In this formula,
the exponents 2, a,, %,..., %, cannot be determined by dimensional analysis.
We shall see that they are nothing other than the so-called anomalous
dimensions in RG theory. Barenblatt refers to this case as self-similarity of
the second kind.

(iii) None of the above. In this case, perhaps more complicated com-
binations of dimensionless parameters than in (ii} are required for the limit
II,— 0 to be well defined. This is a very interesting possibility, but has
never been studied as far as we are aware. If n — oo, then so-called multi-
fractal behavior falls under this category (Halsey et al., 1986; Jensen et al.,
1987; for a more general viewpoint, see Oono, 1990).

3. PHENOMENOLOGY AS A CONSEQUENCE
OF RENORMALIZABILITY

Our goal is to determine the large-scale or long-time behavior of a
given system. Experience has shown that in this limit, the full complexities
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of the microscopic physics can often be subsumed into a small number of
phenomenological parameters. When this is indeed the case. then it is
meaningful to consider a Macroscopic phenomenological description. To
illustrate what we mean by a macroscopic phenomenological description,
consider the motion of a three-dimensional macroscopic fluid. We know, at
least for small Reynolds number [empirically and mathematically
{Ladyzhenskaya, 1969 Temam, 1977; Constantin and Foias, 1988} ], that
the macroscopic description is given by the Navier-Stokes equation. The
most important fact about the Navier Stokes equation is that it describes
any Newtonian fluid, and specific properties of the fluid may be expressed
by only a few materials constants such as viscosity, density, etc. Thus the
macroscopic phenomenological description of Newtonian fluids consists of
two parts: the universal structure, i.c., the structure of the equation itself,
and phenomenological parameters sensitive to the specific microscopic
physics of the system. Any good phenomenological description of a system
always has this structure: a universal part and a few detail-sensitive
parameters (called materials constants or phenomenological parameters ).
In this sense, it is possible that there is no good macroscopic phenomenol-
ogy of two-dimensional Newtonian fluids, even though the two-dimen-
sional Navier -Stokes equation is well defined (Ladyzhenskaya, 1969:
Temam, 1977; Constantin and Foias, 1988), because the presence of long-
time tail (see, e.g., Pomeau and Resibois, 1975) renders the existence of
phenomenological transport coefficients questionable.

Important examples of macroscopic phenomenology can be found in
the theory of critical phenomena (see, e.g., Stanley, 1971) and polymer
systems (de Gennes, 1980). The correlation length ¢ of a system near 4
critical point is related to the temperature 7 as &=~ &g WTr—-T)TA ",
where T is the critical temperature, &, is a microscopic length, and the
gxponent v seems only to depend on generic properties of systems, such as
the dimension, or the symmetry group. Thus, in this case, T, and the
proportionality constant &, are the phenomenological parameters, and the
algebraic functional form with exponent v is the universal structure. The
mean square end-to-end distance {R?) (average squarc radius) of a
polymer chain with degree of polymerization N is given by (R*> =EiN™,
and again the exponent v is independent of the chemical details of the
polymer and its solvent, so long as N is sufficiently large. The universal
laws mentioned above are reminiscent of the universal power law of the
energy spectrum £ of fully developed turbulence: E, ~k " with v=5/3
(see, e.g., Rose and Sulem, 1978). The exponent v is presumably indepen-
dent of the details of the stirring. Notice, however, that there is a
fundamental difference between the statistical mechanical examples above
and the problem of turbulence. In the former, specific system details, in
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which we are not interested, are in the microscopic scale, but in the latter,
these irrelevant details are at the largest scale of the system.

In order to extract the universal features of a system, we exploit the
tautological fact that the universal structure does not depend on
microscopic details in the limit of large-scale observation, ie., the limit of
(macrolength scale)/(microlength scale) — oc. Thus if we consider a set of
transformations that alters only the microscopic parameters of a model
(e.g., through redefining the lattice spacing of the underlying lattice or the
size of the molecular unit of a polymer chain), the macroscopic universal
features should remain unchanged. Therefore, if we can absorb the
changes caused by modification of microscopic parameters into a few
phenomenological parameters, we can obtain universal relations between
phenomenological parameters. If this is possible by introducing a finite
number of phenomenological parameters, we say that the model (or the
system) is renormalizable. This is the standard method of formulating the
probiem of extracting macroscopic phenomenology with RG. RG seeks the
microscopic detail sensitive parts in the theory and tries to absorb them
into macroscopic phenomenologlcal parameters.

Let us briefly discuss the relationship between models of physical
phenomena and reality. Suppose that the macroscopic phenomenology of
a system can be described successfully with a renormalizable microscopic
model. The phenomenological parameters must be provided from either
experiment or from 2 description valid at a smaller length scale. Is this a
fundamental limitation of the renormalizable theory? If one 1s a reduc-
tionist, the answer is probably yes. However, another point of view is
that microscopic models are not more fundamental than macroscopic
phenomenology. In fact, it is inevitable that in constructing models of
physical systems, phenomena beyond some energy scale (or on length
scales below a threshold) are neglected. In this sense, all present-day
theoretical physics 1s macroscopic phenomenology.

This discussion of the relationship between microscopic and macro-
scopic models has an important corollary. A macroscopic description of a
system may be insensitive to microscopic details. Thus there is no unique
microscopic picture that is consistent with the macroscopic phenomenol-
ogy. In fact, there is an equivalence class of microscopic models all of
which have the same macroscopic phenomenology. One could say that this
fact is epistemologically important, but this is also very useful in practice.
If one is solely interested in studying universal, macroscopic properties of
a system, one can choose the most convenient or simplest (in some sense)
microscopic model (called a minimal model).

The RG is a practical implementation of these ideas. It is a set of
transformations between the parameters describing a system at a small
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iength scale and those describing the system on a larger scale. It is not, in
principle, necessary that the transformation relate different length scales. In
an example we mention later, the transformation is in time rather than in
space. Obtaining the transformation is often quite difficult, and a variety of
techniques have been developed by statistical physicists to construct RG
ransformations in the case of critical phenomena and statistical field
theory.

Once an RG transformation has been constructed, the fixed points are
sought. The possible fixed points as the RG is iterated to longer and longer
length scale correspond to the possible macroscopic phenomenologies.
Specific methods are available for studying systems ncar fixed points, but
these are not discussed here. In the parameter space corresponding to all
microscopic models, there are several basins of attraction: all microscopic
models initially in a given basin of attraction flow under the RG towards
the same fixed point and hence the same macroscopic phenomenology.
Renormalization group theory has taught us how to extract Jefinite macro-
scopic conclusions from this vague description. Of course, this is not
always possible, as we have suggested in the case of two-dimensional
aydrodynamics. However, we clearly recognize general macroscopic
features of the world in our daily lives as macroscopic creatures! Thus, we
may believe that for many important aspects of the macroscopic world
there must be renormalizability. We may say that renormalizability makes
physics possible.

4. A STATISTICAL MECHANICAL EXAMPLE

Renormalization group theory has been unquestionably successful in
various statistical mechanical problems such as second-order phase transi-
tions {see, c.g., Wilson and Kogut, 1974), and polymer solutions (Oono.
1985). Using an example, we outline how such problems can be considered
as IA problems. Then, we reinterpret this using the standard RG approach.
We use a polymer chain as a typical example. This is because the theory
of poiymer systems is one of the clearest applications of RG: even with the
brutal approximation necessary for the calculation, the predictions for
universal properties are in quite good agreement with experiment. Further-
more, the authors have some experience with this system, and given the
polymer-turbulence analogy proposed by Chorin (1988), this topic should
not be alien to hydrodynamicists. The approach we explain in the following
is not the Wilson-type RG theory adopted by Yakhot and Orszag (1986),
but much closer to that used in high-energy physics, and developed by
Gell-Mann and Low (1954) (see also Bogoliubov and Shirkov, 1959).
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4.1. Example—A Single-Chain Polymer

Let us consider a polymer chain suspended in a solvent. We assume
that the chain has the total length N, which is proportional to the number
of monomers in the chain, and that there is a short-range repulsive self-
interaction among monomers. The monomer-monomer interaction energy
for a chain, divided by k; T, where k is the Boltzmann constant and T is
the absolute temperature, can be written as

¢

%L‘OJ dr plr)? (4.1

where p is the monomer density, v, is the interaction parameter ( >0), and
d 1s the spatial dimensionality. Monomers cannot occupy the same point in
space. Hence the interaction should not contain unphysical self-interac-
tions. Thus, along the chain around each point on the chain, there is a
small zone of size @ with which the point cannot interact. The size of this
zone need not correspond to the monomer size. Our microscopic model
contains three parameters, Ny, v,, and a. We want to find the relation
between the root-mean-square end-to-end distance {R>> of the chain in
terms of these parameters.

Let us cast the problem in the language of intermediate asymptotics
(TA). First, we write the equation corresponding to (2.1). We may consider
the chain without self-interaction as the trajectory of a random walker up
to N, steps. This implies that the polymer size is proportional to N/K’;
That is, the length dlong the chain has effectively the dimension of
(length)*. Since a is measured along the chain this also should have the
same dimension. For later convenience we introduce a phenomenological
parameter L, which may be interpreted as the square of a phenomenologi-
cal length scale. Hence, [L]=[<{(R*>]=[N,]=1[a]. Henceforth, [*]
denotes the dimension of ¢. Since energy divided with k57 is dimen-
sionless, (4.1) implies that [v,][L]Y ([N, 1/[L]9?) =1 or [r,L°*]=1,
where ¢ =4 —d. Thus the dimensionless quantities we need are

= <{R*/L, INy=ua/L, I, =N,/L. II,=cv,L°7  (42)
The equation of type (2.1) reads:
=/, I1,. 1) (4.3)

We are interested in the limiting behavior of a very long chain, so that
we wish to take the limit /7, — 0. Since this limit could also be realized by
a— 0, unphysical self-interactions causc the model to be ill defined. The
theory actually contains divergences in the 77, — 0 limit. Therefore, we can-
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not have the situation (i) referred to in Section 2. Experimentally, we know
{e.g., Daoud eral. 1975} that there is a well-defined phenomcnological
description in terms of the effective polymer length N and the effective
interaction parameter . This means that our problem is in category (ii).
Hence. there must be numbers %, %;. and 2, as in (2.2) such that

fim 777 = Vim (T T T TV TG (4.4)
)

a =0 a— &

is well defined. To have the well-defined phenomenology which we know
empirically in the present example, we must be able to absorb a into
phenomenological parameters. This becomes possible if we interpret
phenomenological parameters as follows:

N=N %,  v=v,dl§ (4.5)

The exponent 2 must be zero. because < R>) is a directly observable quan-
tity, so that it cannot be redefined. In contrast, ¢, and N, are parameters
that we cannot observe directly by macroscopic observation. This is why
we can introduce N and v as macro-observables.

In the renormalization group approach we introduce renormalization
constants Z, and Z, as

(R*)= Lf(voL* *Z,, (Ny/L) Z,) (4.6)
We define phenomenologica] (or renormalized) parameters as
N=NyZ,, v=10025 (4.7)

and the divergences due to a — 0 limit are absorbed into these redefined
parameters. Thus we have a perfect parallelism between RG and IA.
Comparing (4.5) and (4.7), we should have

Z ~ (%) Zy~ 6) (4.8)

This is indeed the case. We compute ( R?) perturbatively in uo = v, L (or
equivalently in u=vL" 2y, absorbing the divergences in the a — 0 limit order
by order into Z, and Z,. Thus we can compute the «'s perturbatively.
We will demonstrate this method later with Barenblatt’s example. In the
present case (Ohta et al, 1982) o, = —u/n* and a,=u/4n’ to the lowest
nontrivial order.
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4.2. Renormalization Group Equation

An important consequence of the assertion that there is a macroscopic
phenomenological description, in the sense discussed in Section 3, is the
renormalization group equation. The key point is that changing L should
not change macroscopic observables. For example, {R?*> should be a
definite number independent of L, if a microscopic model is fixed, because
L is introduced independent of the microscopic model. Hence, we have an
obvious identity:

8 R?
L R —0 (4.9)
(/"L | microparameters
Let us introduce a function F:
(R*>/L=F(u, X) (4.10)

where u is already introduced, and X' = N/L. Using the chain rule, we can
compute this identity more explicitly as

oF oF
—+ [ - 11X = 4.1
F+ﬁ(”)au+[’(”) 1¥=5 0 (4.11)
where
 du, . dInZ,
B(”’:au’ ) =—2r (4.12)

(4.11) is called the renormalization group equation (for (R?*»). The
derivatives are computed with fixed microscopic parameters. To fully utilize
this equation we need f to order u?: it reads (Ohta eral, 1982; Oono,
1985)

Blu) = u(u* —u)/m* (4.13)

with u* =n’/2 to the nontrivial lowest order. y is obtained from (4.8) as
(1) = u/(2m)* to this order. Solving (4.12), it is easy to demonstrate that
for large N (or X) we may set u = u*. Therefore, for simplicity, here we set
f=0 and y=7*=¢/8 in (4.12). We have only to solve the following
ordinary differential equation:

dF
Fa(pr—1) X =0 (4.14)
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Thus, we get

Lt )
<R2>:AL<Z> (4.15)

where A is a nonuniversal constant. If we know that the problem is in
category (ii), then we may demand that the renormalization group ¢qua-
tion like (4.9) holds asymptotically. with the aid of the RG equation, we
can compute nontrivial exponents perturbatively. The nature of the resul-
tant expansion formulas 1s generally unclear, but they are believed to be
Borel summable asymptotic expansions.

5. A PDE EXAMPLE——BARENBLATT’S PROBLEM

Barenblatt (1979) discusses the following nonlincar parabolic equa-

tion:
1é8%u e
du gi?\? if (f,ll>0
== 2 (5.1)
¢ 1 ou A
—(1+e)=x5 i o,u<0
2 cx~
where xe{—=%, +% ), te(0, + ¢ }, and the initial condition is given by
; o Py
u(x, 0)= g(x)z@")—l—ze » (5.2)

where 0 is a positive number.

5.1. Intermediate Asymptotics Approach

We want to study the solution in the small & limit, or in the t =
limit. The problem contains variables X, I, and parameters & Q,, and d.
The last parameter corresponds to the cutoff parameter in the preceding
section. Analogous to [ in the preceding section, it 18 copvenient to intro-
duce a phenomenological time scale T, which defines the macroscopic unit

of time. Thus, we have the following dimensionless quantities:
M=u T/ =0T, 11,=xT. L=4T,  I=¢
(5.3)

Barenblatt demonstrates that this is actually a category (ii) problem in the
5 — 0 limit. In this case, x and 7 are directly observable, so % and %
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should be zero. If we interpret (5.1) as a macroscopic equation for long
time behavior, then ¢ should also be directly observable, so that «; must
vanish as well. The only quantity we cannot know from macroscopic obser-
vation is Q,, so that the equation corresponding to (2.2) should read

lim 11/ = lim f(I1o, IT,, II,, I,)/ 1T 54)

3—0 3—0

This implies that we may asymptotically assume the following functionat
form for the solution:

w(x, =1~ V2TV f(x) (5.5)

Barenblatt introduces this into the original equation (5.1) and obtains a
nonlinear eigenvalue problem for a, which cannot be solved analytically.
5.2. Renormalized Perturbation Approach

Now we present our solution to this problem from the statistical
physics point of view. First, we construct a formal solution to (5.1) as
follows:

ulx, 1) = | dy Glx— 3. 1) &(3)
P +le \ ds j dy G(x— y, 1—5) 0[—a,u(y, )1 8Lul(y, s)  (5:6)
Y0 V

where ¢ is the Heaviside step function and G is the following Green’s
function:

1 2
G()C,I)Z(E;)-ﬁe*Y 2’ (5.7)

Next we solve this equation perturbatively in powers of &:
u=u,+eu;+ - (5.8)

The zeroth order is given by

_ o . x7
“(’_[2n(z+5)]”e"p< 050 (39)

In the computation of the first order we use the zeroth-order solution in
the step function. We find that

AN

_QO Al +Us 1 }’2
u1#4nJ(5 dSJ \qd}'s 511)

1
1

—
[s(1—s—3)1""

2
, — V28

€

ef(x—'})ZZ(’*"*é) (510)
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We are interested in the 6 =0 limit. Replacing 7+ d with ¢ in (5.10), we get
a formula correct to order &

onr AR Y
==\ d dy—{——1
i 4 Js gv[ 3 ) s\ s )

——

1

A RN 0(0) (5.11)

We can isolate the singularity in the & — 0 limit explicitly:

1 4 1 p+i R 5
U, :Q—O—: o j ds - ( dwe THw 1)
4n \/[ S R
on’ (! ][ 1 LWl s |
+___ d d" _  _p (X NEAN) { .s]_v__’_() x- 21
4n g SJ,] " N (7—-5‘)12( \//_l:
xe V2w = 1)+ 0(9) (5.12)
The first term in (5.12) is singular in the small & limit:
[ul]singular: - 11'1([/(3))(“0 (513)

(2me)"”

Thus, we have obtained

Qo . ,27< 1 !
h =" e l—g——lIn-+ -
u(x, t) (2m)‘-£ 8(2710)‘ 5 nb+

+ (nonsingular terms) (5.14)

This is the so-called “bare” perturbation result. Now, we must renormalize
it: that is, we must try to absorb this singularity into a phenomenological
parameter.

According to our discussion at the beginning of this section, Q, is the
“microscopic parameter” we cannot know directly from a large-scale obser-
vation. Hence, we may introduce a phenomenological counterpart Q, and
the accompanying renormalization constant Z as

0=20, (5.15)

The renormalization constant Z is dimensionless, so that it can depend
only on dimensionless constants I7g= 8/T and IT,=¢ We assume that Z
can be expanded in powers of ¢ as

Z=14+cA(T/3)+ - (5.16)
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and try to absorb the singularity in (5.14) order by order. This is exactly
the method by which (4.8) was obtained. Splitting the singular term in
(5.14) using

t T t
-=Iln—+In— (5.17
ln(5 n(5+nT { )

we can rewrite (5.14) as

0o . :2( l 1 )
; = o ]l —g———In—+ -
ulx, 1) (?.m)126 N é(27ze)’2 n(i J

+ (nonsingular terms}) (5.18)

Putting (5.16) into (5.18), we get

_ Q 7,\'321( 7 __1_ I i }
u_——[2n(r)]”e {1 8[(27[6)121“ (STA}+

+ (nonsingular terms) (5.19)

Therefore the following choice allows us to absorb the singularity into Q:

1 T
Proceeding naively, we expect that
]*\ &, (27!(’)12+
ZZ(g) _1 (5.21)

where we have used the definition of « in (5.4). Hence, we have obtained
x=¢/(2me)'? + ... =0.24197 -..¢. This indeed agrees with the expansion
(Liu, 1989: Goldenfeld er al., 1989) obtained from the analytical result due
to Barenblatt (1979). The final result in the § — O limit reads

Q —x22¢

ulx, t)y=—"—"—5¢€

2nt) + ¢ x (nonsingular terms) (5.22)

This is called the renormalized perturbation series for w.

5.3. Renormalization Group Equation

In the above computation of o, we have assumed the power law form
for Z. This is justified by the renormalization group equation akin to (4.9).
Let us write

u:gg_zf(% 2 g> (5.23)
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where 1= ¢/T. The RG equation reads

Cu

Ta—T bm.“ho:O (5.24)
Using the chain rule, we can rewrite this as
—%_f'—ogfvrgzo {5.25)
where 2 is defined as
dlnZ
xE—alnT (5.26)

Solving (5.25), we get the foilowing general solution:

] x4+ 1/2 xz
f=<7T> F<7, e:) (5.27)

where Fis a function yet to be determined. Hence, we have

u="L29 p (L s> (5.28)

=[12+_x ‘

The unknown function F can also be determined perturbatively through
comparison of (5.28) and the renormalized perturbation result (5.22). We
will not discuss this straightforward but often tedious process in this article.
An important point is that we can often improve perturbational results
considerably with the aid of the RG equation. One of the most successful
examples can be seen in the statistical physics of polymer solutions (Oono,
1985).

6. DISCUSSION

In this article we have explained the principles of renormalization
group (RG) theory as a general framework for extracting phenomenologi-
cal relations among macroscopic observables from microscopic models that
may not be precisely definable. Thus, RG approaches should not be restric-
ted to statistical mechanical and field theoretical problems only. This point
of view has enabled us to discover the equivalence of the theory of inter-
mediate asymptotics (IA), which is traditionally applied to partial differen-
tial equations (PDE), and RG theory. We hope that this relation will make



368 Goldenfeld et al.

where t=1/T. The RG equation reads
T cu

— =0 (5.24)
CT x.1.6,0 =0

Using the chain rule, we can rewrite this as

1. ) of
—=f—af—1==0 (5.25
2] af —1 o (5.25)

where « 1s defined as
- onZ (5.26)
=TT s

Solving (5.25), we get the following general solution:

f:G)Hl 2F<‘7 > (527)

where F is a function yet to be determined. Hence, we have

u=12 F(i, ;:) (5.28)

_112+1 f

The unknown function F can also be determined perturbatively through
comparison of (5.28) and the renormalized perturbation result (5.22). We
will not discuss this straightforward but often tedious process in this article.
An important point is that we can often improve perturbational results
considerably with the aid of the RG equation. One of the most successful
examples can be seen in the statistical physics of polymer solutions (Oono,
1985).

6. DISCUSSION

In this article we have explained the principles of renormalization
group (RG) theory as a general framework for extracting phenomenologi-
cal relations among macroscopic observables from microscopic models that
may not be precisely definable. Thus, RG approaches should not be restric-
ted to statistical mechanical and field theoretical problems only. This point
of view has enabled us to discover the equivalence of the theory of inter-
mediate asymptotics (IA), which is traditionally applied to partial differen-
tial equations (PDE), and RG theory. We hope that this relation will make
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possible not only a deeper understanding of RG, but also wider applica-
tions of RG methods to applied mathematics and hydrodynamic problems.
We have demonstrated that a conventional perturbative scheme to imple-
ment RG can indeed solve a typical PDE problem studied by TA.

We would like to emphasize that RG is not tied to statistical systems
(stochastic systems). Conventionally, RG is used to study the effect of
microscopic noise, coupled to the nonlinearity of the system, on macro-
scopic observables. However, as has been explicitly demonstrated with the
aid of a PDE example, the existence of a stochastic or statistical element
is not required. Generally speaking, RG is a method to study the
asymptotic behavior of a system. e.g., in the macroscopic limit, where the
scale of observation is much larger than the scale of microscopic descrip-
tion. We have explained at length what we mean by macrescopic descrip-
tion of a system. It should be stressed that phenomenology is not a second-
rate incomplete description of a given system, but the most compiete
description modulo microscopic unknown factors over which we can never
have ultimate detailed knowledge.

We should also emphasize that RG methods are not restricted to per-
turbative approaches. This point should be clear from the existence of the
so-called real-space RG methods (see, e.g., Burkhardt and van Leeuwen,
1982). This line of research should be seriously pursued to understand
turbulence, but it is generally very difficult to get reliable results without
extensive computational efforts.

Perturbative implimentations of RG approaches are used almost
exclusively in analytical work to date. As we have already mentioned in the
Introduction, in all the successful examples of perturbative RG calcula-
tions, the unperturbed system and the exact system are, in a certain sense,
not as different as we might otherwise expect. For example, the shapes of
a polymer chain in three-dimensional space with and without self-repul-
sions are, after an appropriate scaling of the sizes, not drastically different
{sce, e.g., Fig. 8 in Oono, 1985). The nonlinear effect, which is treated per-
turbatively, on the transport properties near the critical point is, after all,
not extremely drastic. Orszag (1989) suggests that this is indeed the case
even for turbulence.

However, we feel that there is a fundamental difference between the
conventionally successful examples of perturbative RG approaches and
turbulence. Let us take the simplest nontrivial example, called model A
{Hohenberg and Halperin, 1977):

o

P —(ty+ gyt =D AY)+n (6.1)

where 7, g, and D are positive constants, 4 is the Laplacian, and # is an
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appropriate spatially uncorrelated white noise. The perturbation parameter
1s g. This equation describes equilibrium dynamics near a critical point.
The system always has only one characteristic macroscopic length &, the
correlation length. We are interested in the large correlation length limit.
We shrink the spatial scale to facilitate the study of this limit. Although
this scaling makes D very small, other parameters also become very small
near the critical point. Thus the solution cannot develop discontinuities or
singularities as & — o, because there is only a single important length scale.
Let us next consider an example which defies conventional

approaches:
LA+ g =D A (6.2)

This is called the Cahn-Hilliard—Cook equation (see, ¢.g., Furukawa, 1985)
describing the phase separation process of binary alioys (spinodal decom-
position). The crucial point is the existence of an extra Laplacian and the
minus sign in front of 7. In this case, the solution has two length scales,
one independent of time 7, and the other scaling as t'*. The physical
meaning of the former length scale is the thickness of the interface between
separating bulk phases, and that of the time-dependent one is the size of
the growing bulk phases. From the macroscopic point of view, we are
interested in the limit r — oc, so that the former length scale eventually
becomes infinitesimally small after rescaling the spatial variable. Therefore,
the solution from the macroscopic point of view is characterized by the
existence of discontinuities or shock structures. Note that the rescaling of
the length scale is tantamount to reducing D with other parameters kept
constant. Thus we are interested in the case with infinitesimally small D.
Another such example is the Kolmogorov-Petrovsky-Piscounoff (KPP) or
Fisher equation (Kolmogorov et al.,, 1937; Fisher, 1936):

%=Dﬁl//+t//(1—l//) (6.3)

which can exhibit a propagating shock front. Again, in this case shrinking
the spatial length scale is equivalent to reducing D. Notice that in these two
cases, solutions even lose their differentiability in the macroscopic limit. Let
us call the problems in this category shock-type.

Now, let us consider the Navier-Stokes equation. In which category is
it, the shock-type or the smooth-type as model A? Obviously, the parameter
corresponding to D in the above examples is the reciprocal of the Reynolds
number, Re. In the Re — oc limit, the Navier-Stokes equation reduces to
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the Euler equation. Hence, it is obviously in the shock-type category.
Therefore, in order to understand the RG approach to the Navier-Stokes
equation, we believe it is crucial to find a systematic perturbative scheme
for the KPP equation, because it is the simplest shock-type equation.
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