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Summary 

A theory of dendritic growth is reviewed, which accounts, in principle, 
for the growth rate and shape of dendrites in solidification, electrochemical 
deposition, and two-phase fluid flow. A variety of different growth forms is 
possible, depending upon both the degree of anisotropy and the deviation 
from equilibrium of the system. The possible morphologies have been 
explored in both fluid systems, which are an analogue for solidification, and 
electrochemical deposition. Speculation as to how dendritic growth in bat- 
teries can be controlled is briefly mentioned. 

Introduction 

The problem of understanding dendritic growth has had a long and 
somewhat tortuous history: Kepler [l] considered the question of the six- 
fold symmetry of snowflakes even before the existence of atoms was recog- 
nised, but more recently, attention has focussed on the question of the 
dynamics of crystal growth. The last few years have seen a renaissance of 
interest in this problem, and it is probably fair to say that many of the basic 
principles are now understood to the satisfaction of most physicists working 
in this area. This understanding has emerged through a combination of 
experimental work, mathematical analysis, computer simulation and numer- 
ical analysis; it provides an account of the possible patterns or morphologies 
exhibited by diffusion-controlled systems far from equilibrium. These 
include two different dendritic phases, a disordered branching structure 
known as the dense branching morphology, and more open structures, such 
as those found in diffusion-limited aggregation [ 21. Certain quantities, such 
as the growth rate of isolated dendrites can now, for the first time, be com- 
puted accurately and reliably, and compared with experiment; quantitative 
tests of the theory are presently the primary objectives of research in this 
area. Since this work has been widely published, it does not seem worthwhile 
to include a full review in these proceedings. However, a brief overview of 
the subject, with a guide to the literature may be useful, and this wilI form 
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the content of the present article. In addition, the prospects for controlling 
the self-destructive tendencies of batteries in solution, where the growth of a 
deposit between the electrodes can cause the battery to fail, will be consid- 
ered briefly. 

Dendritic growth during solidification 

Dendritic growth is usually considered to be the generic mode of solid- 
ification of crystalline materials. The solidification front propagates at a uni- 
form velocity, uO, into the supercooled solution of the solidifying material in 
the form of a smooth, almost paraboloid tip with tip radius po, followed by 
a train of sidebranches which are almost stationary in the laboratory frame 
of reference. The dendrite always propagates along the same crystallograph- 
ically preferred direction, with the tip apparently preserving its shape. In the 
classic experiments of Glicksman et al. [3], isolated dendrites were studied; 
u. and p. were reproducible and approximately satisfied the relation 

1 
u0- -- 

A2.6 
(1) 

PO 

where A is the undercooling measured in dimensionless units: 

A- 
TM - Tcs 

L/C, 
(2) 

Here, TM and T, are the melting temperature and the temperature at infin- 
ity, respectively, L is the latent heat released during the phase transition to 
the solid state and C, is the specific heat at constant pressure of the liquid. 
A is a parameter which plays the role of a driving force, maintaining the 
system out of equilibrium. Wherever possible, physical quantities are defined 
in a dimensionless way, in order that the equations describing different sys- 
tems can easily be compared. The principal focus of theory was, for many 
years, to account for the observed shape of dendrites, the values of p. and 
uo, and to explain eqn. (1). 

The physics of dendritic growth is as follows: As the supercooled liquid 
solidifies, latent heat is generated. If the solidification front is to be able to 
advance, then the latent heat must be transported away from the front, 
otherwise the solid will simply melt back. In idealised situations, the only 
mechanism for transport is diffusion, although other mechanisms, such as 
convection are, in general, certainly important. In this case, the temperature 
T varies in space 5? and in time t, and when normalised in the same way that 
TM is normalised in eqn. (2), obeys the diffusion equation 
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where D is the thermal diffusion coefficient and u is the normalised temper- 
ature. For simplicity, we can consider the diffusion to occur only in the 
liquid; no new points of principle emerge if a more realistic assumption is 
used. Equation (3) also applies in the case of the isothermal solidification of 
a binary alloy, in which case u describes the concentration of one of the spe- 
cies, and the assumption about no diffusion in the solid is quite realistic. The 
diffusion equation has to be solved subject to boundary conditions applied 
at infinity and at the solidification front, and subject to an initial condition 
for the temperature field and the solidification front. At infinity, the nor- 
malised temperature tends to zero. At each point s on the solidification 
front, conservation of energy requires that the latent heat generated during 
the motion of the solidification front create a flux into the liquid: 

u,(s) = -D$u(s)*Z(s) (4) 

where u,(s) is the velocity of the interface along the unit normal, Z(s), to 
the interface at position s. Note that at this stage, we do not know the posi- 
tion of the solidification front, so we do not know where to apply this 
boundary condition i In fact, we wish to determine the position of the 
front, as well as the temperature field. To do this, we need an extra bound- 
ary condition, which states how the shape of the front affects its temper- 
ature, u,. This condition is the Gibbs-Thomson condition, modified to 
take into account the fact that the solidification front is moving, and so is 
not in equilibrium: 

u, = A - d& - flu,, (5) 

If the interface were planar and stationary, it would just be at the melting 
temperature, which is A in our units. However, its motion and its curvature, 
K, reduce the temperature. Since U, is dimensionless, d,, has the dimensions 
of a length, and is known as the capillary length. It is proportional to the 
surface tension, and is typically of the order of 10 - 20 8. The coefficient 
fl is known as the kinetic coefficient, and is frequently ignored for small A, 
although it must be non-zero. Equations (3) - (5) are traditionally considered 
to be sufficient to describe dendritic growth, and we shall refer to them as 
the standard model. 

The physical origin of the instability of the interface giving rise to 
dendritic growth was identified by Mullins and Sekerka [ 4 1. They considered 
a bump on an otherwise planar solidification front, and asked how fast it 
would grow relative to the rest of the interface. In the vicinity of the tip, the 
thermal gradients are steeper than elsewhere, essentially because of the 
point-effect or lightning rod effect in electrostatics. The steep thermal 
gradients cause the velocity of the bulge to be greater than elsewhere, i.e., 
the bulge grows. Surface tension cuts off the growth of bulges smaller than 
a certain size 

X, = 2r(d,1)“2 

where 

(6) 
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l=Dlv, (7) 

is the diffusion length, over which the temperature field falls by a factor of 
e = 2.718 28... from its value at the interface. So the interface evolves under 
two competing tendencies, one of which is due to diffusion and maximises 
the area of the interface; the other is due to surface tension and minimises 
the area of the interface. The actual coupling between these two tendencies 
is highly non-linear due to the curvature term in eqn. (5). A successful 
theory of dendritic growth must cope with this difficulty. 

Progress in the field until about 1980 has been excellently reviewed by 
Langer [5], but much of this material has been superseded by the develop- 
ments mentioned below (the article remains invaluable, however). The prin- 
cipal defect of all work prior to 1983 is the assumption that the standard 
model is a sufficient description of the physics. It is not. The missing ingre- 
dient is anisotropy in the surface tension and in the kinetic coefficient due 
to the presence of the crystal lattice in the solid phase. This anisotropy does 
more than simply control the asymmetry of the growing crystal. It influences 
the dynamics in a rather profound way. The surprisingly important role of 
anisotropy was first discovered [6] in a simplified model of solidification, to 
which we now turn. 

Simplified models of interface dynamics 

The complexity of the standard model prevented any reliable analytical 
or even numerical calculations to determine whether or not the solutions of 
the equations reproduced, even qualitatively, the experimentally observed 
features of dendritic growth. As a first step towards further simplification 
of the problem, phenomenological models for interface motion in two 
dimensions were considered. Brower et al. [7] stripped the problem down to 
its bare essentials, and considered the motion of an interface whose dyn- 
amics was simply given by the prescription that the velocity v, was a given 
function of the curvature and its second derivative with regard to the arc- 
length s of the interface. The function was chosen to mimic certain features 
of the Mullins-Sekerka instability. In this model, the geometrical model 
(GM), much analytical and computational work could be performed. In the 
boundary-layer model [6] (BLM) of Ben-Jacob et al., the interface is 
coupled to a field obeying the diffusion equation, just as in the standard 
model, but the diffusion length 1 is assumed to be small compared with the 
radius of curvature of the interface. In this case, the diffusion of heat mainly 
occurs in a thin boundary layer around the interface, and many simplifica- 
tions result [8]. 

The principal conclusion which emerged unambiguously from computer 
simulations of the BLM, and later the GM, was that only when the anis- 
otropy in d, or p was taken into account were the qualitative features of den- 
dritic growth reproduced. Without sufficient anisotropy the interface evolves 
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via a succession of tip-splitting instabilities into a branched structure. 
It was also discovered how to predict the growth rate of the dendrites 

in the simple models [9, lo]. It turns out that there exist steady state solu- 
tions of the equations of motion, which describe a steadily propagating 
‘needle crystal’ without sidebranches. The needle crystals are approximately 
parabolic solidification fronts. Their velocity is ‘quantised’; only certain 
velocities are allowed, and there is a maximum velocity permissible. This 
maximum velocity is, indeed, that at which the dendrites grow in the com- 
puter simulations of these models. Furthermore, the smooth region near the 
tip of these dendrites precisely matches the tip of the needle crystals. Away 
from the tip, the dendrites develop sidebranches, whereas the needle crystals 
remain smooth [9]. Analytic theories for the growth rate were subsequently 
developed [ll]. Physically, the velocity quantisation is a result of the fact 
that surface tension is a singular perturbation. In the absence of surface 
tension, needle crystals exist for any velocity [ 121. 

Why are the needle crystals never seen in the computer simulations or, 
indeed, in the experiment? Why do dendrites have sidebranches? To answer 
these questions it is necessary to consider the stability of the needle crystals 
to small perturbations. Perturbations can grow in magnitude and spread 
laterally; in addition, they can be advected down the body of the needle 
crystal, so the definition of stability has to be made with some care. The 
most useful concept has been stability at a point on the interface at a fixed 
distance from the tip. Calculations of the stability spectrum have been made 
for both the GM [lo] and the BLM [ 131. In the GM, it was found that as 
the anisotropy strength increases from zero, there is a critical point at which 
the fastest needle crystal becomes linearly stable. This transition occurs 
through a Hopf bifurcation involving an oscillatory mode. By contrast, in 
the BLM the fastest needle crystal is linearly stable for all non-zero anis- 
otropy strength. The slower moving needle crystals are, however, always 
linearly unstable, and so are not observed. The results in the BLM are consis- 
tent with the suggestion that sidebranches originate from the selective 
amplification of noise [ 141, although other dynamical mechanisms are also 
possible [ 151. This explanation for the origin of sidebranches also explains 
why the fastest needle crystal precisely matches the tip of the dendrites 
observed in the timedependent solutions of the equations of motion for the 
BLM. Experimental support for this scenario comes from measurements of 
the correlations between sidebranches [ 161. 

The standard model with anisotropy 

The BLM is a physical, but not exact mathematical, limit of the stan- 
dard model with anisotropy. All of the qualitative results mentioned above 
have been found to be valid in the standard model too, when supplemented 
by anisotropy. A list, by no means exhaustive, of the principle results is given 
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here. Computer simulations of the equations of motion have confirmed the 
role of anisotropy [ 171, and the existence of a discrete set of allowed needle 
crystals has been shown numerically [18] and analytically [19]. Very 
recently, the first direct comparisons of theory with experiment have been 
attempted [20]. The stability analysis follows that of the BLM (it was 
actually performed earlier for the standard model) [ 211, and the same scena- 
rio for sidebranches probably applies here too. 

Hydrodynamic analogues of dendritic growth 

When a viscous fluid is confined between two closely spaced parallel 
plates, and air is injected into the gap through a hole in one of the plates, the 
resulting bubble displays many similarities to a growing crystal 1221. Such an 
apparatus is known as a Hele-Shaw cell [23]. From the Navier-Stokes equa- 
tions, it can be shown that [24] the pressure field in the quasi-two-dimen- 
sional viscous fluid obeys the diffusion equation (or the Laplace equation if 
the fluid is incompressible). The boundary conditions for the pressure at 
the edge of the bubble are Laplace’s law, which is precisely the Gibbs- 
Thomson condition, eqn. (5), but with temperature replaced by pressure. It 
should come as no surprise to learn that the growing bubble does not grow 
in s stable, circular fashion, but becomes unstable and radiates ‘fingers’. 
However, these fingers are not dendritic - they have no sidebranches and 
propagate in random directions, evolving by tip-splitting. This is a clear 
indication that diffusion and surface tension on their own -the standard 
model - are not sufficient to generate the characteristic features of den- 
dritic growth, a result in agreement with theory. 

A variety of experiments has been performed to demonstrate and 
study the analogy between two-phase fluid flow and dendritic growth. In 
ref. 22 air was injected at the centre of a Hele-Shaw ceil, of which the lower 
plate had been engraved with a regular grid. The resulting bubble did not 
grow circularly, but instead generated a striking snowflake-like pattern. In 
the absence of anisotropy, a branching structure with radial symmetry was 
observed [25]. This, so-called, dense, branching morphology is ubiquitous 
as a pattern generated by diffusion-controlled interface motion. It is 
observed in (e.g.) electro-chemical deposition [26] and in the growth of 
polymeric and organic crystals [27]. In the dense branching morphology, 
the arms branch at non-crystallographic angles, in a manner quite distinct 
from dendritic growth. 

An important concept to emerge from these experiments is that of the 
morphology diagram. For example, in the Hele-Shaw experiments, it is 
possible to vary the strength of the anisotropy by varying the plate spacing. 
As the anisotropy strength and the overpressure of the injected air are varied, 
different patterns are observed. For a fixed anisotropy strength, as the driv- 
ing force (overpressure) A is increased, the patterns pass through the se- 
quence : faceted crystals, dendrites (due to the anisotropy in the surface 
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tension), tip-splitting, dendrites (due to the anisotropy in p). Morphology 
diagrams have also been determined in electrochemical deposition [ 26,281. 

Precise experiments on the Hele-Shaw cell without an engraved lattice 
have also been performed [29]. A particularly interesting set of experiments 
has recently been reported in which the presence of a small bubble near the 
tip of one of the ‘fingers’ of air causes sidebranches to develop [30]. 

Control of dendritic growth in batteries 

The breakdown of batteries often occurs when a deposit grows on the 
cathode, forming dendrites, or perhaps the dense, branching morphology. 
The arms grow through the porous material separating the electrodes, finally 
reaching the anode, and destroying the battery. 

Can the progress in the field of dendritic growth assist in finding a solu- 
tion to this problem? Although the level of understanding of dendritic 
growth is not yet sufficient to predict the morphology for a given set of 
experimental conditions, it can be helpful to, at least, know what are the 
possibilities for controlling the growth of electrode deposits. Experimenta- 
tion is required to see if trends can be discerned. Although I am not sanguine 
about the prospects df improving battery performance by exploiting the 
research described above, I offer three vague speculations about possible 
directions to pursue, in the hope that they might trigger a successful attack on 
the problem. 

The first possibility is to increase the size of the dendrites. They will 
then grow slower and prolong the lifetime of the battery. They may also be 
too big to penetrate the porous barrier. In practice, growth will always 
occur through the barrier, but the rate will depend upon the ratio of the 
pore size to the diffusion length (amongst other things). 

Secondly, the more closed the structure that grows, the slower it will 
grow (all other things being equal). Whether or not there are impurities 
in the system can control whether or not the structure is dendritic or dense 
branching, and the openness of the resulting morphology. 

Thirdly, it might be possible to find an impurity species which, when 
added to the battery, will become incorporated into the growing deposits 
in such a way that the resultant deposit is an insulator. 

Even if the above suggestions turned out to be useful, it is by no 
means clear that the performance of the battery would not be seriously 
undermined. 
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